Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Диалектическое единство данных и методов в информационном процессе

Содержание:

Введение

В курсовой работе описано диалектическое единство данных и методов в информационном процессе. Для информатики как технической науки понятие информации не может основываться на таких антропоцентрических понятиях, как знание, и не может опираться только на объективность фактов и свидетельств. Средства вычислительной техники обладают способностью обрабатывать информацию автоматически, без участия человека, и ни о каком знании или незнании здесь речь идти не может. Эти средства могут работать с искусственной, абстрактной и даже с ложной информацией, не имеющей объективного отражения ни в природе, ни в обществе.

В этой работе дается определение информации, основанное на ранее продемонстрированном факте взаимодействия данных и методов в момент ее образования. Информация — это продукт взаимодействия данных и адекватных им методов.

1. Понятие и свойства информации

Информация содержится везде. Дерево содержит собственную генетическую информацию, и только благодаря этой информации от семечки берёзы вырастает только берёза. Для деревьев источником информации является воздух, именно по состоянию воздуха дерево может определить время распускания почек. Перелётные птицы знают свой маршрут перелёта, и каждая стая идёт только своим заданным в генах маршрутом.

Информация и ее свойства являются объектом исследования целого ряда научных дисциплин, таких как теория информации (математическая теория систем передачи информации), кибернетика (наука о связи и управлении в машинах и животных, а также в обществе и человеческих существах), семиотика (наука о знаках и знаковых системах), теория массовой коммуникации (исследование средств массовой информации и их влияния на общество), информатика (изучение процессов сбора, преобразования, хранения, защиты, поиска и передачи всех видов информации и средств их автоматизированной обработки), информодинамика (наука об открытых информационных системах), информациология (наука о получении, сохранении и передаче информации для различных множеств объектов) и т. д.

1.1 Понятие информации

В литературе можно найти достаточно много определений термина «информация», отражающих различные подходы к толкованию этого понятия. В «Федеральный закон Российской Федерации от 27 июля 2006 г. N 149-ФЗ Об информации, технологиях и о защите информации» дается следующее определение этого термина: «информация — сведения (сообщения, данные) независимо от формы их представления». Толковый словарь русского языка Ожегова приводит 2 определения слова «информация»:

Сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специальным устройством.

Сообщения, осведомляющие о положении дел, о состоянии чего-нибудь. (Научно-техническая и газетная информации, средства массовой информации — печать, радио, телевидение, кино).

В информатике понятие информации определяется как осознанные сведения об окружающем мире, которые являются объектом хранения, преобразования, передачи и использования.

Сведения — это знания, выраженные в сигналах, сообщениях, известиях, уведомлениях и т. д. Каждого человека в мире окружает море информации различных видов. Несмотря на то, что единого строгого определения информации не существует, имеется возможность описать этот термин через характерные свойства: дуализм(двойственность), достоверность, полнота, адекватность, доступность и актуальность.

Стремление зафиксировать, сохранить надолго свое восприятие информации было всегда свойственно человеку. Мозг человека хранит множество информации и использует для хранения её свои способы, основа которых — двоичный код, как и у компьютеров. Человек всегда стремился иметь возможность поделиться своей информацией с другими людьми и найти надёжные средства для её передачи и долговременного хранения. Для этого в настоящее время изобретено множество способов хранения информации на внешних (относительно мозга человека) носителях и её передачи на огромные расстояния.

Основные виды информации по её форме представления, способам её кодирования и хранения, что имеет наибольшее значение для информатики, это:

графическая или изобразительная — первый вид, для которого был реализован способ хранения информации об окружающем мире в виде наскальных рисунков, а позднее в виде картин, фотографий, схем, чертежей на бумаге, холсте, мраморе и др. материалах, изображающих картины реального мира;

звуковая (акустическая) — мир вокруг нас полон звуков и задача их хранения и тиражирования была решена с изобретением звукозаписывающих устройств в 1877 г. (см., например, историю звукозаписи на сайте — http://radiomuseum.ur.ru/index9.html); её разновидностью является музыкальная информация — для этого вида был изобретен способ кодирования с использованием специальных символов, что делает возможным хранение её аналогично графической информации;

текстовая — способ кодирования речи человека специальными символами — буквами, причем разные народы имеют разные языки и используют различные наборы букв для отображения речи; особенно большое значение этот способ приобрел после изобретения бумаги и книгопечатания;

числовая — количественная мера объектов и их свойств в окружающем мире; особенно большое значение приобрела с развитием торговли, экономики и денежного обмена; аналогично текстовой информации для её отображения используется метод кодирования специальными символами — цифрами, причем системы кодирования (счисления) могут быть разными;

видеоинформация — способ сохранения «живых» картин окружающего мира, появившийся с изобретением кино.

Существуют также виды информации, для которых до сих пор не изобретено способов их кодирования и хранения — это тактильная информация, передаваемая ощущениями, органолептическая, передаваемая запахами и вкусами и др.

Для передачи информации на большие расстояния первоначально использовались кодированные световые сигналы, с изобретением электричества — передача закодированного определенным образом сигнала по проводам, позднее — с использованием радиоволн.

Создателем общей теории информации и основоположником цифровой связи считается Клод Шеннон (Claude Shannon). Всемирную известность ему принес фундаментальный труд 1948 года — «Математическая теория связи» (A Mathematical Theory of Communication), в котором впервые обосновывается возможность применения двоичного кода для передачи информации.

С появлением компьютеров вначале появилось средство для обработки числовой информации. Однако в дальнейшем, особенно после широкого распространения персональных компьютеров (ПК), компьютеры стали использоваться для хранения, обработки, передачи и поиска текстовой, числовой, изобразительной, звуковой и видеоинформации. С момента появления первых персональных компьютеров — ПК (80-е годы 20 века) — до 80 % их рабочего времени посвящено работе с текстовой информацией.

Хранение информации при использовании компьютеров осуществляется на магнитных дисках или лентах, на лазерных дисках (CD и DVD), специальных устройствах энергонезависимой памяти (флэш-память и пр.). Эти методы постоянно совершенствуются, изобретаются и носители информации. Обработку информации (воспроизведение, преобразование, передача, запись на внешние носители) выполняет процессор компьютера. С помощью компьютера возможно создание и хранение новой информации любых видов, для чего служат специальные программы, используемые на компьютерах, и устройства ввода информации.

Особым видом информации в настоящее время можно считать информацию, представленную в глобальной сети Интернет. Здесь используются особые приемы хранения, обработки, поиска и передачи распределенной информации больших объемов и особые способы работы с различными видами информации. Постоянно совершенствуется программное обеспечение, обеспечивающее коллективную работу с информацией всех видов.

1.2 Свойства информации

Как и всякий объект, информация обладает свойствами. Характерной отличительной особенностью информации от других объектов права информации влияют как свойства исходных данных, составляющих ее содержательную часть, так и свойства методов, фиксирующих эту информацию.

С точки зрения информатики, наиболее важными представляются следующие общие качественные свойства: достоверность, полнота, точность, актуальность, полезность, ценность, своевременность, понятность, доступность, краткость и пр.

Субъективность информации. Информация существует только во взаимосвязи с субъектом, передающим эту информацию и зависит от человеческого сознания. Информация — это субъективное отражение внешнего объективного мира. Информация зависит от методов ее фиксации и оценки.

Пример. Объективными являются данные - показания термометра в конкретном месте в конкретное время, а информация «На улице тепло» является субъективной оценкой этих данных, как и информация «На улице 22 градуса тепла». При этом, можно говорить только о точности этой информации, но не о её объективности.

Объективными являются данные, полученные с помощью исправных датчиков, измерительных приборов. Отражаясь в сознании человека, информация искажается (в большей или меньшей степени) в зависимости от мнения, суждения, опыта, знаний конкретного субъекта.

Достоверность информации. Информация достоверна, если она отражает истинное положение дел. Достоверная информация помогает принять нам правильное решение. Недостоверной информация может быть по следующим причинам:

преднамеренное искажение (дезинформация) или непреднамеренное искажение субъективного свойства;

искажение в результате воздействия помех («испорченный телефон») и недостаточно точных средств ее фиксации.

Полнота информации. Информацию можно назвать полной, если ее достаточно для понимания и принятия решений. Неполная информация может привести к ошибочному выводу или решению.

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т. п.

Актуальность информации — важность для настоящего времени, злободневность, насущность. Только вовремя полученная информация может быть полезна.

Полезность (ценность) информации. Полезность может быть оценена применительно к нуждам конкретных ее потребителей и оценивается по тем задачам, которые можно решить с ее помощью.

Самая ценная информация — полезная. При этом следует учитывать, что и недостоверная информация (например, художественная литература), имеет большую значимость для человека. В художественной литературе полезная информация представлена неявным образом. Социальная (общественная) информация обладает еще и дополнительными свойствами:

  • имеет семантический (смысловой) характер, то есть понятный, так как именно в понятиях обобщаются наиболее существенные признаки предметов, процессов и явлений окружающего мира.
  • имеет языковую природу (кроме некоторых видов эстетической информации, например изобразительного искусства). Одно и то же содержание может быть выражено на разных естественных (разговорных) языках, записано в виде математических формул и т. д.

С течением времени количество информации растет, информация накапливается, происходит ее систематизация, оценка и обобщение. Это свойство назвали ростом и кумулированием информации. (Кумуляция — от лат. cumulatio — увеличение, скопление).

Старение информации заключается в уменьшении ее ценности с течением времени. Старит информацию не само время, а появление новой информации, которая уточняет, дополняет или отвергает полностью или частично более раннюю. Научно-техническая информация стареет быстрее, эстетическая (произведения искусства) — медленнее.

Логичность, компактность, удобная форма представления облегчает понимание и усвоение информации.

1.3 Классификация информации

Информацию можно классифицировать самыми разными способами.

  • по способу восприятия;
  • по степени значимости;
  • по форме представления;
  • по способам (субъектам) обмена.

Распишем эти виды информации более подробно.

По способу восприятия информация бывает:

  • визуальной,
  • звуковой (аудиальной),
  • обонятельной,
  • вкусовой,
  • тактильной.

По степени значимости:

  • личная,
  • специальная,
  • общественная.

Личная – это знания, опыт, интуиция, умения, планы, прогнозы, эмоции, чувства, наследственная память конкретного человека. Специальная делится на научную, производственную, техническую, управленческую. Общественная включает в себя общественно-политическую, научно-популярную, обыденную, эстетическую.

По форме представления:

  • текстовая,
  • числовая,
  • графическая,
  • звуковая,
  • видео.

По способам (субъектам) обмена:

  • социальная,
  • техническая,
  • биологическая,
  • генетическая.

Можно использовать другой вариант классификации информации:

  • по сфере применения информации (экономическая, географическая,

социологическая и пр.);

  • по характеру источников информации (первичная, вторичная,

обобщающая и пр.);

  • по характеру носителя информации (информация, «зашифрованная» в

молекулах ДНК или в длинах световых волн, информация на бумажном

или магнитном носителе и пр.).

В зависимости от типа носителя различают следующие виды информации:

  • документальная;
  • акустическая (речевая);
  • телекоммуникационная.

Документальная информация представляется в графическом или буквенно цифровом виде на бумаге, а также в электронном виде на магнитных и других носителях.

Речевая информация возникает в ходе ведения разговоров, а также при

работе систем звукоусиления и звуковоспроизведения. Носителем речевой

информации являются звуковые колебания в диапазоне частот от 200...300 Гц до 4...6 кГц. При кодировании звук подвергается дискретизации и квантованию. При дискретизации изменяющаяся во времени величина (сигнал) замеряется с заданной частотой (частотой дискретизации), т.е. сигнал разбивается по временной составляющей. Квантование же приводит сигнал к заданным значениям, т.е. разбивает по уровню сигнала. Сигнал, к которому применены дискретизация и квантование, называется цифровым.

Качество кодирования зависит от количества измерений уровня сигнала в

единицу времени. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

При оцифровке сигнала уровень квантования называют также глубиной дискретизации или битностью. Глубина дискретизации измеряется в битах и обозначает количество битов, выражающих амплитуду сигнала. Чем больше глубина дискретизации, тем точнее цифровой сигнал соответствует аналоговому сигналу.

Телекоммуникационная информация циркулирует в технических средствах обработки и хранения информации, а также в каналах связи при ее передаче. Носителем информации при ее обработке техническими средствами и передаче по проводным каналам связи является электрический ток, а при передаче по радио- и оптическому каналам – электромагнитные волны.

Источник информации может вырабатывать непрерывное сообщение

(сигнал), в этом случае информация называется непрерывной. Например,

сигналы, передаваемые по радио и телевидению, а также используемые в

магнитной записи, имеют форму непрерывных, быстро изменяющихся во

зависимостей. Такие сигналы называются непрерывными, или аналоговыми сигналами. В противоположность этому в телеграфии и вычислительной технике сигналы имеют импульсную форму и называются дискретными сигналами.

Сравнивая непрерывную и дискретную формы представления информации,

нетрудно заметить, что при использовании непрерывной формы для создания вычислительной машины потребуется меньшее число устройств (каждая величина представляется одним, а не несколькими сигналами), но эти устройства будут сложнее (они должны различать значительно большее число состояний сигнала).

Информация, циркулирующая в обществе, требует специальных средств и методов обработки, хранения и использования. Сформировались новые научные дисциплины – кибернетика, бионика, робототехника и другие, имеющие своей целью изучение закономерностей информационных процессов.

Не менее сложным является вопрос «как измерить информацию?». На

данный момент выработано три подхода к измерению информации.

I подход – неизмеряемость информации в быту (информация как новизна). Представьте, что вы получили какое-то сообщение, например прочитали статью в любимом журнале. В этом сообщении содержится какое-то количество информации. Как оценить, сколько информации вы получили? Другими словами, как измерить информацию? Можно ли сказать, что чем больше статья, тем больше информации она содержит?

Разные люди, получившие одно и то же сообщение, по-разному оценивают его информационную ёмкость, то есть количество информации, содержащееся в нем. Это происходит оттого, что знания людей о событиях, явлениях, о которых идет речь в сообщении, до получения сообщения были различными. Поэтому те, кто знал об этом мало, сочтут, что получили много информации, те же, кто знал больше, могут сказать, что информации не получили вовсе. Количество информации в сообщении, таким образом, зависит от того, насколько ново это сообщение для получателя.

В таком случае, количество информации в одном и том же сообщении

должно определяться отдельно для каждого получателя, то есть иметь субъективный характер. Но субъективные вещи не поддаются сравнению и

анализу, для их измерения трудно выбрать одну общую единицу измерения.

Таким образом, с точки зрения информации как новизны мы не можем однозначно и объективно оценить количество информации, содержащейся даже в простом сообщении. Что же тогда говорить об измерении количества

информации, содержащейся в научном открытии, новом музыкальном стиле, новой теории общественного развития.

Поэтому, когда информация рассматривается как новизна сообщения для получателя, вопрос об измерении количества информации обычно не ставится, но можно оценить содержательность информации, и здесь нам приходит на помощь так называемый семантический подход. Для измерения смыслового содержания информации, т. е. ее количества насемантическом уровне, наибольшее признание получила тезаурусная мера, которая связывает семантические свойства информации со способностью пользователя принимать поступившее сообщение. Для этого используется понятие «тезаурус пользователя».

Тезаурус – это совокупность сведений, которыми располагает пользователь

или система. Максимальное количество семантической информации Iс потребитель получает при согласовании ее смыслового содержания со своим тезаурусом, когда поступающая информация понятна пользователю и несет ему ранее неизвестные сведения. С семантической мерой количества информации связан коэффициент содержательности С (1), определяемый как отношение количества семантической информации к общему объему данных.

II подход – объемный: измерение информации в технике (информация как сообщения в форме знаков или сигналов, хранимые, перерабатываемые и обрабатываемые с помощью технических устройств). В технике, где информацией считается любая хранящаяся, обрабатываемая или передаваемая последовательность знаков, сигналов, часто используют простой способ определения количества информации, который может быть назван объемным или синтаксическим. Он основан на подсчете числа символов в сообщении, то есть связан только с длиной сообщения и не учитывает его содержания.

В вычислительной технике применяются две стандартные единицы

измерения информации: бит (англ. binary digit – двоичная цифра) и байт (byte). Поскольку компьютер предназначен для обработки больших объемов информации, то принято использовать производные единицы – Кбайт (Кб), Мбайт (Мб), Гбайт (Гб). 1 Кбайт равен 210 = 1024 байта. Аналогично, 1 Мб = 210 Кб = 1024 Кб = 220 байтов = 1 048 576 байтов. 1 Гб = 210 Мб = 1024 Мб = 220 Кб = 230 байтов = 1 073 741 824 байта.

Для представления текстовой (символьной) информации в компьютере используется алфавит, состоящий из 256 символов (мощность алфавита – количество символов в алфавите). 1 байт равен 8 битам, т. е. 8 двоичным разрядам. Количество различных однобайтовых двоичных кодов 00000000,

00000001, 00000010,..., 00110010,..., 11111111) равно 28 = 256. Этими кодами можно представить и 256 различных чисел, например, числа 0, 1, 2, 3,..., 255. Максимальное число, которое можно представить однобайтовым двоичным кодом «11111111», равно 255. Для представления чисел в памяти компьютера используются два формата: с фиксированной точкой и с плавающей точкой. В формате с фиксированной точкой представляются только целые числа, в формате с плавающей точкой вещественные числа (целые и дробные). Множество целых чисел, которое можно представить в компьютере, ограничено. Диапазон значений зависит от размера ячеек, используемых для их хранения. В k-разрядной ячейке может храниться 2k различных значений целых чисел. Например, в 16-разрядной ячейке может храниться 216 = 65536 различных значений.

Графическая информация на экране дисплея представляется в виде изображения, которое формируется из точек (пикселей). В современных компьютерах и сотовых телефонах разрешающая способность (количество точек на экране дисплея), а также количество цветов зависят от видеоадаптера. Цветные изображения могут иметь различные режимы: 16 цветов, 256 цветов, 1024 цвета, 65536 цветов (high color), 16777216 цветов (true color). Разрешающая способность экрана – это размер сетки растра (растр – это прямоугольная сетка пикселей на экране), задаваемого в виде произведения M×L, где М – число точек по горизонтали, L – число точек по вертикали. Число цветов графического файла, т. е. файла, хранящего графическое изображение, определяется формулой K = 2N, где К – число цветов, воспроизводимых на экране, и N – число бит, отводимых в видеопамяти под каждый пиксель (битовая глубина). Размер такого файла

определяется формулой V=M×L×N. Например, черно-белое изображение на экране с разрешением 640×480 будет занимать 640×480×1 битов памяти (N=1, т. е. 1 бит на пиксель), т. е. 307200 бит или 38400 байт. В реальности в графических документах кроме описания цвета точек присутствует ещё и служебно- дополнительная информация (о формате записи, авторских правах, способах сжатия и пр.).

Цветное изображение формируется за счёт смешивания трёх базовых цветов: красного, зелёного и синего. Такая цветовая модель называется RGB-моделью. При глубине цвета 24 бита под каждый цвет отводится 8 битов. Код 00000000 соответствует ситуации, когда интенсивность отдельного цвета нулевая, а при коде 255 (11111111) интенсивность максимальна. Белый цвет на экране имеет код 255.255.255.

III подход – вероятностный: измерение информации в теории информации (информация как снятая неопределенность). Получение информации (её увеличение) означает увеличение знания, что, в свою очередь, означает уменьшение незнания или информационной неопределенности. Таким образом, с точки зрения на информацию как на снятую неопределенность количество информации зависит от вероятности ее получения.

Причем чем больше вероятность события, тем меньше количество информации в сообщении о таком событии. Иными словами, количество информации в сообщении о каком-то событии зависит от вероятности свершения данного события. Количеством информации называют числовую характеристику сигнала, отражающую ту степень неопределенности (неполноту знаний), которая исчезает после получения сообщения в виде данного сигнала. Эту меру неопределенности в теории информации называют энтропией. Случайность любого события заключается в том, что реализация того или иного исхода имеет некоторую степень неопределенности. Пусть до получения информации потребитель имеет некоторые предварительные (априорные) сведения о системе α. Мерой его неосведомленности о системе является некоторая функция H(α).

После получения некоторого сообщения β получатель приобрел дополнительную информацию Iβ(α), уменьшившую его априорную неосведомленность так, что апостериорная (после получения сообщения β)

неопределенность состояния системы стала Hβ(α).

Тогда количество информации Iβ(α) о системе, полученной в сообщении β, определится как Iβ(α)=H(α)-Hβ(α), т. е. количество информации измеряется уменьшением неопределенности состояния системы. Иными словами, энтропия системы H(α) может рассматриваться как мера недостающей информации.

В частном случае для системы, имеющей N возможных состояний,

количество информации может быть вычислено по формуле К.Э. Шеннона.

Более простой подход к оценке сообщений был предложен еще в 1928 году

Р. Хартли. Наиболее просто определить количество информации в случае, когда все исходы события могут реализоваться с равной долей вероятности.

Таким образом, за единицу количества информации принимают выбор

одного из двух равновероятных сообщений («да» или «нет», «1» или «0»).

2. Диалектическое единство данных и методов в информационном процессе

Рассмотрим связь между данными и информацией приведенную на Рис2 и более подробно рассмотрим следующие обстоятельства:

  • Динамический характер информации
  • Требование адекватности методов
  • Диалектический характер взаимодействия данных и методов

Рис. 2. Связь между данными и информацией

2.1 Динамический характер информации

Информация не является статичным объектом — она динамически меняется и существует только в момент взаимодействия данных и методов. Все прочее время она пребывает в состоянии данных. Таким образом, информация существует только в момент протекания информационного процесса. Все остальное время она содержится в виде данных. Одни и те же данные могут в момент использования поставлять разную информацию в зависимости от степени адекватности взаимодействующих с ними методов. Например, для студента, не владеющего каким-либо языком, текст, написанный на этом языке, дает только ту информацию, которую можно получить методом наблюдения (количество символов, наличие незнакомых символов, способ их написания и т. д.).

Использование же более адекватных методов может дать другую информацию. Таким образом, «информация возникает и существует в момент диалектического взаимодействия объективных данных и субъективных методов». Характерной особенностью информации, отличающей её от других объектов природы и общества, является то, что на свойства информации влияют свойства данных, составляющих ее содержательную часть, и свойства методов, взаимодействующих с данными в ходе информационного процесса.

2.2 Требование адекватности методов

Одни и те же данные могут в момент потребления поставлять разную информацию в зависимости от степени адекватности взаимодействующих с ними методов. Например, для человека, не владеющего китайским языком, письмо, полученное из Пекина, дает только ту информацию, которую можно получить методом наблюдения (количество страниц, цвет и сорт бумаги, наличие незнакомых символов и т. п.). Все это информация, но это не вся информация, заключенная в письме. Использование более адекватных методов даст иную информацию.

Под адекватностью понимают степень соответствия информации, полученной потребителем, тому, что автор вложил в ее содержание (то есть в данные). Поскольку информация является продуктом взаимодействия данных и методов, то на ее свой­ства, в том числе и на адекватность, влияют как адекватность данных, так и адекватность методов.

2.3 Диалектический характер взаимодействия данных и методов

Обратим внимание на то, что данные являются объективными, поскольку это результат регистрации объективно существовавших сигналов, вызванных изменениями в материальных телах или полях. В то же время, методы являются субъективными. В основе искусственных методов лежат алгоритмы (упорядоченные последовательности команд), составленные и подготовленные людьми ((Субъектами). В основе естественных методов лежат биологические свойства субъектов информационного процесса. Таким образом, информация возникает и существует в момент диалектического взаимодействия объективных данных и субъективных методов.

Такой дуализм известен своими проявлениями во многих науках. Так, например, в основе важнейшего вопроса философии о первичности материалистического и идеалистического подходов к теории познания лежит не что иное, как двойственный характер информационного процесса. В обоснованиях обоих подходов нетрудно обнаружить упор либо на объективность данных, либо на субъективность методов. Подход к информации как к объекту особой природы, возникающему в результате диалектического взаимодействия объективных данных с субъективными методами, позволяет во многих случаях снять противоречия, возникающие в философских обоснованиях ряда научных теорий и гипотез.

Дуализм информации характеризует ее двойственность. С одной стороны, информация объективна в силу объективности данных, с другой, она субъективна, в силу субъективности применяемых методов. Иными словами, методы могут вносить в большей или меньшей степени субъективный фактор и таким образом влиять на информацию в целом. Например, два человека читают одну и ту же книгу и получают подчас весьма разную информацию, хотя прочитанный текст, т.е. данные, были одинаковы. Более объективная информация применяет методы с меньшим субъективным элементом.

Полнота информации характеризует степень достаточности данных для принятия решения или создания новых данных на основе имеющихся. Неполный набор данных оставляет большую долю неопределенности, т.е. большое число вариантов выбора, а это потребует применение дополнительных методов, например, экспертных оценок, бросание жребия и т.п. Избыточный набор данных затрудняет доступ к нужным данным, создает повышенный информационный шум, что также вызывает необходимость дополнительных методов, например, фильтрация, сортировка. И неполный и избыточный наборы затрудняют получение информации и принятие на основе их адекватного решения.

Достоверность информации – это свойство, характеризующее степень соответствия информации реальному объекту с необходимой точностью. При работе с неполным набором данных достоверность информации может характеризоваться вероятностью, например, можно сказать, что при бросании монеты с вероятностью 50% выпадет герб.

Список используемой литературы

  1. Симонович С. В. Информатика. Базовый курс: Учебник для вузов. 3-е издание
  2. Степанов А. Н.. Архитектура вычислительных систем и компьютерных сетей, 2007
  3. А.П. Пятибратов, Л.П. Гудыно, А.А. Кириченко. Вычислительные машины, сети и телекоммуникационные системы, 2009
  4. О.А. Акулов Н.В. Медведев. Информатика и вычислительная техника, 2005
  5. Захаров А. Ю., Маркачев Ю. Е. Современные пакеты и библиотеки

программ математического обеспечения // Препринт ИПМ им. М.В. Келдыша. 1987

  1. W h a l e y R. C., P e t i t e t A., D o n g a r r a J. Automated Empirical

Optimization of Software and the ATLAS Project, UT-CS-00-448, September 2000

  1. Горбунов - Посадов М. М., Корягин Д. А., Мартынюк В. В.

Системное обеспечение пакетов прикладных программ. М.: Наука, 1990.

  1. Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений. М.: Мир, 1980
  2. О.А. Акулов Н.В. Медведев. Информатика и вычислительная техника. 2005
  3. Завгордний В. И. Комплексная защита информации в компьютерных системах. – М. “Логос”, 2001.
  4. Малюк А. А., Пазизин С. В., Погожин Н. С. Введение в защиту информации в автоматизированных системах. – М. “Горячая линия – телеком”, 2001.