Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Характеристики и типы мониторов для персональных компьютеров ( Характеристики монитора)

Содержание:

Введение

Πepcoнaльный ĸoмпьютep — пpoдyмaннaя cиcтeмa, ĸoтopyю мoжнo cĸoнфигypиpoвaть пoд любыe нyжды. Pынoĸ пpeдлaгaeт гoтoвыe peшeния для дoмa и oфиca, пpoфeccиoнaльнoй oбpaбoтĸи гpaфиĸи и видeo, игpoвыe cтaнции, вычиcлитeльныe мaшины для пpocчeтa apxитeĸтypныx oбъeĸтoв. Чтo иx oбъeдиняeт? Koмплeĸтyющиe, paзличaeмыe пo cĸopocти paбoты, пpoизвoдитeльнocти, тeплoвыдeлeнию и cтoимocти.

Персональным компьютером в простонародье называют, в основном, привычный компьютер с системным блоком, монитором, клавиатурой и мышью

Возможность представлять информацию в графическом виде имеет множество преимуществ по сравнению с другими способами, поэтому огромное количество современных электронных устройств имеют дисплей для ее вывода и компьютер не является исключением.

Хотя для работы компьютера он не является обязательным элементом и нужен только человеку для удобного взаимодействия с машиной, тем не менее он считается важным компонентом компьютерной системы и его выбору уделяется пристальное внимание.

Компьютерный монитор — это устройство для вывода информации с видеокарты в графическом виде, то есть представления ее в визуальной форме. Это может быть интерфейс программы, видео и так далее.

Устройство является одним из основных интерфейсов взаимодействия пользователя и ПК. От того, насколько правильно вы подберете монитор, будет зависеть качество картинки, а следовательно, и комфорт выполняемых задач – работы, просмотра видео, игры и пр.

Выбор любого компьютера или какого-либо комплектующего начинается с определения критериев, коими в данном случае являются технические характеристики. Согласитесь, при покупке, например, монитора определения «чтобы хорошо показывал» мало, надо знать, какого размера нужен дисплей, с каким разрешением, как он будет подключаться, для каких целей использоваться (для игр, офисной работы). Чтобы ответить на эти и целый ряд других вопросов надо знать, какие характеристики мониторов есть, какие важны, какие не очень, а о чем обычно в официальных спецификациях умалчивается.

Тема работы: Характеристики и типы мониторов для персональных компьютеров

Цель работы: Изучить характеристики и типы мониторов для персональных компьютеров

Предмет исследования: Мониторы

Задачи исследования: изучить

Характеристики мониторов

Виды мониторов

Глава 1 Характеристики монитора

1.1 Диагональ монитора

Конечно, диагональ экрана – это немаловажная характеристика монитора, однако существует много других параметров, которые следует учитывать при выборе монитора для компьютера. Внешне мониторы могут быть практически идентичны, однако их цена нередко отличается в два и более раз.

Диагональ монитора – это первое, что бросается в глаза. При прочих равных, монитор с большим экраном будет дороже, чем с меньшим экраном – это вполне логично. Однако не стоит стремиться купить самый большой монитор, ведь это вам не телевизор, который нужно смотреть с расстояния. За экраном компьютера вы находитесь почти вплотную, поэтому слишком большая диагональ может лишь мешать – придется крутить головой по сторонам, чтобы увидеть все содержимое монитора.

Следует учитывать, что при выборе большого экрана, требования к параметрам видеокарты тоже повышаются.

Наиболее подходящие для работы и учебы мониторы имеют диагональ 19-19.5 дюймов. Такого экрана хватает для выполнения большинства задач.

Модели, имеющие диагональ экрана 21-24 дюйма, идеально подойдут для домашнего использования. На ПК с таким монитором можно поработать, посмотреть фильмы и поиграть в видео-игрушки. На нем без проблем можно открыть сразу несколько диалоговых окон, смотреть широкоформатное кино, удобно пользоваться браузером.

Мониторы, имеющие диагональ 24-27 дюймов, непременно оценят геймеры или любители посмотреть фильмы. Геймеры смогут окунуться в мир виртуальной реальности, ведь на таком экране отлично видны все детали геймплея.

Экраны, больше 27 дюймов востребованы только для выполнения специфических задач. Обычному пользователю ПК такой монитор ни к чему. Стоят такие мониторы намного дороже, чем стандартные 21-24 дюймовые модели. Используют подобные «гиганты» веб-дизайнеры, видео- фотомонтажеры, мультипликаторы и прочие специалисты, работающие с графикой.

1.2 Разрешение монитора

Возможно, для кого-то открою тайну, но разрешение и диагональ монитора – характеристики, которые не обязательно связаны друг с другом. Другими словами, монитор в 19 дюймов может быть с большим числом точек, чем монитор в 21 дюйм. Естественно, чаще прослеживается обратная зависимость, но все же, эти величины не обязательно связаны. Чем выше данный показатель, тем более четким будет изображение, не будут заметны точки (пиксели).

Для мониторов с одной и той же диагональю может быть несколько разрешений, однако производители компьютерной техники обычно придерживаются следующих стандартов:

19 дюймов – 1440х900 точек.

21-24 дюйма – 1600х900 точек. Если экран Full HD, то разрешение будет 1920 на 1080 пикселей.

Дешевые мониторы, диагональю 27-32 дюйма, имеют разрешение 1920х1080 точек, а QHD мониторы – 2560х1440 пикселей.

Гиганты с диагональю 32-45 дюймов имеют матрицу с 2560х1440 пикселями. Если брать модели с качеством 4К, в них разрешение будет 3840х2160 точек. Стоит отметить, что последний формат довольно новый, поэтому он может не поддерживать некоторые игры или фильмы.

1.3 Соотношение сторон

Наверняка, вы замечали, что некоторые мониторы более квадратные, другие же – вытянутые по горизонтали. Есть и такие, которые представлены в виде вертикального прямоугольника.

У стандартных 19-дюймовых мониторов обычно пропорции составляют 4:3. Это наиболее удобное соотношение для работы в большинстве браузеров, стандартных компьютерных программах, приложениях. Однако все больше моделей сейчас выпускается с пропорциями 16:10 или 16:9, которые более близки к углу обзора человеческого глаза.соотношение сторон монитора

Рисунок 1 Соотношение сторон

Формат 16:9 более распространен из-за того, что эффективнее задействует рабочую область. Так, при просмотре широкоформатного кино, черные полоски по краям будут иметь минимальный размер.

Также сейчас пользуются спросом мониторы с соотношением горизонтальной к вертикальной стороне 21:9. Геймеры предпочитают изогнутые матрицы, создающие атмосферную панораму, погружая игрока в волшебный виртуальный мир.

стороны монитора 21:9

Рисунок 1 Соотношение сторон. Монитор для геймеров

1.4 Тип матрицы

Также следует учитывать тип матрицы, который связан с такими важными характеристиками, как:

Время отклика – временной отрезок, необходимый для изменения яркости пикселем. Это значение находится в пределах от 2 до 8 мск. Естественно, чем меньше это время, тем лучше. Если время отклика слишком длительное, то при резкой смене изображения, воспроизводящаяся картинка может смазаться.

Контрастность и яркость. Яркость показывает разность между наиболее светлым и наиболее темным пикселями. Яркость

Указывается в спецификациях на любой монитор. Это величина, измеряемая в кд/м2, (канделах на квадратный метр). Собственно, что это за характеристика, понятно из названия. Строго говоря, чем выше значение этого параметра - тем лучше. Отрегулировать экран, снизив его яркость, не составляет труда.

Что касается экранов ноутбуков, то этот параметр важен еще по той причине, что сама конструкция этого вида компьютера допускает использование его не только в условиях офиса или дома, но и в поездках, на улице, где яркое солнце или иной источник освещения будет засвечивать изображение на экране.

При небольших значениях яркости пользоваться таким экраном при ярком свете будет сложно. Если максимальное значение соответствует 300 кд/м2 или даже выше, то это означает, что яркий солнечный свет не станет помехой.

Контрастность

Этот параметр отражает отношение уровня яркости белого цвета к черному. Обычно его указывают в качестве отношения, например, 1000:1. Как и с яркостью, чем выше это значение – тем лучше. Изображение будет более естественным.

Контрастность зависит от технологии изготовления матрицы. Так, IPS экраны уступают по этому параметру экранам, выполненным по технологии VA, не говоря уже об OLED, квантовых точках и т. п.

Условно можно принять, что экраны с контрастностью 500:1 и менее можно отнести к посредственным. Лучше ориентироваться на значения 1000:1 и выше. Особенно если в своей работе вам приходится иметь дело с редактированием изображений, колоризацией и т. п.

Динамическая контрастность

Этот параметр указывается почти всегда, по крайней мере для обычных, не ноутбучных, мониторов. Согласитесь, что не привести в спецификации, например, значение 100000000:1 –упущение. Большие цифры привлекают внимание и нравятся потенциальным покупателям (при условии, что это не цена).

Что означает эта характеристика? Это результат работы электроники монитора по подстройке изображения в каждый момент времени с целью улучшения «картинки». Происходит управление яркостью ламп с целью добиться высокой контрастности изображения.

Цветопередача – параметр, показывающий, сколько цветов и оттенков может отобразить экран. Цветопередача особенно важна для видео-и фотомонтажеров, дизайнеров и прочих специалистов, чья профессия связана с изображениями.

Угол обзора – при каких максимально допустимых углах обзора картинка не будет изменяться. Если этот параметр высокий, то вы сможете комфортно пользоваться компьютером, глядя на монитор с различных положений. Отличный показатель – 180 градусов слева направо с верху вниз. Однако этот параметр не столь важен, если вы пользуетесь монитором в рабочих целях.

угол обзора монитора

Рисунок 3 Технологии производства ЖКэкранов

1.5 Технологии производства ЖК-экранов

Чтобы выбрать оптимальный монитор для решения строго определенных задач, еще необходимо разбираться в технологиях производства ЖК экранов. Сегодня большинство востребованных мониторов производятся по трем технологиям: TN+film, MVA/PVA и IPS. Каждый из этих видов имеет еще несколько подкатегорий, которые отличаются друг от друга незначительными параметрами.

TN+film – старейшая технология производства ж/к мониторов. Отличается небольшим временем отклика (менее 2 мс), что благоприятно сказывается на отображении динамичных сцен. К недостаткам этого типа экрана можно отнести небольшой угол обзора, а также значительное ухудшение изображения при просмотре под большим углом. Стоит признать, что для некоторых данный недостаток окажется преимущество – сосед на работе не увидит, что вы делаете на компьютере. Цветопередача TN матриц и контрастность тоже не самые лучшие. Однако из-за доступной стоимости, этот тип мониторов до сих пор пользуется популярностью.

MVA/PVA технология более дорогая по сравнению с предыдущей, однако обеспечивает больший угол обзора без ухудшения картинки. Также такие мониторы выдают лучшую контрастность. К недостаткам можно отнести исчезновение теней из мест, где не хватает освещения.Мониторы, изготовленные по технологии IPS, включают несколько разновидностей:

IPS – самая востребованная технология, однако и одна из самых дорогостоящих. Отличается большим углом обзора без потери качества – до 178 градусов. Высокое качество передачи цвета и контрастность будут востребованы у дизайнеров и фотографов. Однако геймерам этот вариант может не подойти из-за длинного отклика – свыше 8 мс.

H-IPS – матрицы, изготовленные по такой технологии, отличаются меньшим откликом по сравнению с предыдущей моделью, а также более качественной контрастностью.

AH-IPS – мониторы с великолепной цветопередачей, имеющие высокую яркость, а также уменьшенное энергопотребление.

E-IPS – более современная технология, обладая достоинствами базовой модели, имеет меньшую цену.

P-IPS – профессиональная матрица, отличающаяся высококачественной цветопередачей.

PLS – аналогичная технология от Samsung, который утверждает, что в его моделях более плотно расположены пиксели. По факту же, разница совершенно не заметна.

1.6 Подсветка монитора

Еще недавно единственным способом подсветки ЖК мониторов было использование люминесцентных ламп CCFL, которые грелись, потребляли много электричества и были недостаточно яркими. Зато демократичная цена полностью оправдывала недостатки.

Вскоре появилась усовершенствованная технология подсветки – LED, основанная на светодиодах. И хотя стоят мониторы LED дороже, они менее энергозатратны, не такие толстые и обладают большей долговечностью. Существуют следующие виды LED-подсветки:

W-LED – самый популярный вид подсветки, при которой белые светодиоды устанавливаются по периметру монитора.

GB-LED – по периметру дисплея установлены подсвечивающие светодиоды двух цветов: синего и зеленого.

RGB-LED – светодиоды трех цветов равномерно нанесены на всю площадь экрана, что обеспечивает наилучшую подсветку и цветопередачу. К сожалению, данная технология самая дорогая.

1.7 Покрытие экрана

Поверхность мониторов может быть с двумя типами покрытий – матовым и глянцевым. Каждый из этих видов обладает своими плюсами и минусами, которые следует учитывать при выборе монитора.

Глянцевая поверхность монитора визуально выглядит ярче. Вся цветовая гамма более насыщена, однако при прямом попадании естественного или искусственного света, появляются блики. Поэтому такие мониторы не следует ставить возле окна, ведь при попадании солнечных лучей, на нем сложно будет что-то увидеть. Кстати, глянцевый экран можно превратить в матовый, используя специальную пленку.

Монитор с матовым покрытием более блеклый по сравнению с глянцевым, что особо заметно на матрицах TN. Кроме того, кристаллический эффект экрана нравится далеко не каждому. Однако изображение на таких мониторах будет постоянно четким, каким бы интенсивным не было внешнее освещение.

Полуглянец – что-то среднее между глянцем и матовым экраном. Внешне выглядит матовым, однако при обзоре под углом, на нем видны блики.

1.8 Глубина черного цвета

А вот этот параметр редко указывается в технических характеристиках, хотя на качество изображения влияет. При использовании монитора в обычных условиях, при дневном свете или искусственном освещении, оценить этот параметр может оказаться сложно.

Другое дело, если вывести на экран картинку черного цвета, то при низком уровне внешнего освещения, или в полной темноте станет заметно, что черный цвет какой-то не совсем черный, а может даже больше походить на серый. Некоторые области экрана могут оказаться ярче соседних.

Это все связано с тем, что для получения изображения на экране ЖК мониторов используется подсветка, и для отображения черного цвета она не выключается, а блокируется поворотом кристаллов таким образом, что они не пропускают свет.

К сожалению, свет они ПОЧТИ не пропускают, часть света все же преодолевает этот барьер. На приведенной выше картинке можно заметить, что черный цвет имеет все же какой-то серый оттенок.

Опять-таки, многое зависит от технологии изготовления матрицы. Черный цвет на экранах VA более похож на черный, чем, например, на IPS. Конечно, многое зависит от качества используемой матрицы, настроек, регулировок, но в целом это так. Лучше всех с черным цветом справляются экраны OLED, на квантовых точках и прочих новых технологиях.

С определенной долей погрешности уровень черного можно вычислить, если поделить яркость на контрастность. Например, при яркости экрана 300 кд/м2 и контрастности 1000:1 получаем значение 0.3. Это означает, что пиксели черного цвета будут светиться (в теории, они вообще не должны светиться, и только в этом случае можно говорить про действительно черный цвет) с яркостью 0.3 кд/м2.

1.9 Частота обновления

Этот показатель обозначает, как быстро сменяются кадры на мониторе. Минимальный порог на данный момент составляет 60Гц, однако в большинстве средненьких мониторов частота смены кадров составляет 75Гц. Такой частоты хватит для выполнения большинства повседневных задач, просмотра фильмов, работе в стандартных программах. На этот параметр следует обратить внимание тем, кто играет в игры, особенно с быстрым перемещением объектов на экране. Важно еще и то, какая видеокарта используется в данном случае. Если она способна выдавать большое количество FPS, то было бы лучше, чтобы и частота обновления экрана была выше.

Если посмотреть на модели дисплеев, в том числе в игровых ноутбуках, то можно заметить, что предлагаются экраны с частотой обновления 120, 144 Гц или даже выше. В этом случае быстрое движение на экране будет более плавным и с меньшим размером шлейфов, тянущихся за перемещаемыми объектами.

Строго говоря, в данном случае не только частота обновления, но и скорость матрицы важна. Пиксели, из которых состоит изображение, должны успевать изменять параметры свечения в зависимости от смены отображаемого изображения. Кстати, малое время отклика в сочетании с высокой скоростью обновления – реальные аргументы в пользу того, что технология TN по-прежнему актуальна для игровых мониторов.

Надо упомянуть и то, что высокая скорость обновления экрана это неплохо, она позволяет снизить остроту проблемы рассинхронизации частоты кадров, которую выдает видеокарта, и скорости обновления картинки на мониторе. Это актуально для игр, и решать эту проблему помогает следующий параметр.

1.10 NVidia G-Sync и AMD FreeSync

Для начала кратко опишем проблему. Идеальная ситуация – это когда видеокарта формирует и выдает монитору каждый кадр с частотой, равной частоте обновления экрана. К сожалению, в каждый момент времени видеочипу приходится обсчитывать совершенно разные сцены, одни из которых более «легкие», и на них уходит меньше времени», другие же требуют заметно большего времени на рендеринг.

В результате, кадры подаются на монитор с частотой выше или ниже скорости обновления экрана. При этом если видеокарта успевает обсчитать, выдать кадр, да еще и немного отдохнуть перед рендерингом следующего в ожидании очередного цикла обновления экрана, то особых проблем нет.

Другое дело, если в игре выставлены высокие настройки графики и для расчетов сцены видеопроцессору приходится напрягать все свои кремниевые силы. Если же на расчет уходит много времени и кадр не готов к началу цикла обновления, тут возможны два сценария:

Цикл пропускается.

Отрисовка начинается тогда, когда кадр готов и подан на монитор.

В первом случае необходимо задействовать режим вертикальной синхронизации V-Sync. Если к началу обновления экрана новый кадр не подготовлен, то продолжает отображаться предыдущий. Результат – появляющиеся микрозадержки изображения, подергивания. Зато картинка полноценная.

Если режим V-Sync отключить, то движение станет более плавным. Правда, может появиться другая проблема. Если кадр подготовлен где-то внутри цикла обновления экрана, то кадр будет состоять из двух частей, старого и нового, который начнет отрисовываться с момента его подачи на монитор. Визуально это выражается в горизонтальных разрывах изображения, ступеньках.

Более высокая частота обновления снижает остроту проблемы. Но полностью ее не решает. Помочь избавиться от этих неприятных проблем с изображением позволяют технологии NVidia G-Sync и AMD FreeSync.

Как следует из названия, они предложены производителями видеокарт. Поэтому, при выборе монитора, в котором есть одна из этих технологий, следует учитывать, какая видеокарта стоит в вашем компьютере, или какую собираетесь поставить. Неразумно к видеокарте AMD покупать монитор с G-Sync и наоборот. Пустая трата денег на то, что использоваться не будет.

Теперь о самих этих технологиях. Принцип действия их схож, но методы решения различаются. NVidia использует собственный программно-аппаратный способ. В мониторе есть специальный блок, отвечающий за работу G-Sync, а AMD обходится средствами протокола DisplayPort Adaptive-Sync, т. е. без установки дополнительных аппаратных блоков в монитор.

В данном случае не важно, какими средствами решается проблема, важно то, что можно получить в итоге. Если кратко, то принцип действия G-Sync и аналога от AMD таков.

Частота обновления экрана не фиксирована, а привязана к скорости рендеринга видеокарты. Изображение на мониторе появляется в тот момент, как кадр готов к показу. В результате, мы получаем не фиксированные, например, 60 Гц обновления экрана, а плавающее значение. Один кадр обсчитан быстро – и он сразу появляется на экране. Второй рендерится дольше – матрица дисплея ждет и не обновляет изображение, пока кадр не будет готов.

В итоге имеем плавное изображение без разрывов и прочих артефактов. Таким образом, в случае с монитором, выбираемом для игр, идеальным вариантом является модель с наличием одной из этих двух технологий (с учетом совпадения производителя видеокарты в компьютере) и, желательно, с частотой обновления 120 Гц и выше. Правда, дешевым такой дисплей точно не будет.

1.11 ШИМ

Характеристика, которая практически никогда не указывается. Что такое ШИМ (англ. - PWM)? Это Широтно-Импульсная Модуляция, которая используется для регулировки яркости экрана. В чем суть возникающей проблемы?

ВЖК мониторах используется подсветка. Далеко не всегда нужна максимальная яркость свечения экрана, и ее требуется уменьшить. Как это можно сделать? Как минимум двумя способами:

Снизить яркость свечения ламп/светодиодов подсветки.

Заставить источники света включаться и выключаться, подавая на них импульсы с определенной частотой и скважностью, что воспринимается как снижение яркости свечения [3].

Второй вариант и является ШИМ управлением яркостью. Чем он плох? Вот этим самым мерцанием ламп. Хорошо, если частота мерцания высока и составляет десятки кГц. Неплохо, если амплитуда импульсов невелика. Хуже, когда частота мерцания низкая, и это может стать заметным «на глаз».

Принцип действия состоит в следующем. Для снижения яркости экрана импульсы на лампы подсветки подаются таким образом, что они часть времени включены, а часть – выключены. Например, при 50% яркости ламы половину времени горят, а половину времени нет.

Результирующим значением отношения времени, когда подсветка включена, ко времени, когда выключена, будет тот или иной уровень яркости экрана. При дальнейшем снижении яркости время свечения ламп уменьшается, а время, когда они находятся в выключенном состоянии, увеличивается. Мерцание становится более заметным.

Естественно, многое зависит от индивидуальных особенностей зрения. Кто-то мало реагирует на такое мерцание, а у кого-то через пару часов, фигурально выражаясь, глаза начинают «вытекать» [7].

Как бы то ни было, наличие ШИМ – это минус монитора. К сожалению, узнать о наличии или отсутствии этого неприятного эффекта можно либо из обзоров или отзывов на тот или иной дисплей, либо проверить это самостоятельно. Можно провести простую проверку, которая получила название «карандашный тест».

Суть в том, что надо взять обычный карандаш и в плоскости экрана помахать им как веером. Естественно, дисплей должен быть включен. Если при быстром перемещении контуры карандаша видны, то, к сожалению, мерцание есть. Если же контуры не видны, то мерцания нет. Следует повторить тест на меньших значениях яркости.

Если в выбранном мониторе ШИМ присутствует, то при наличии подробных обзоров, лучше узнать, как он действует. Если частота импульсов большая, или ШИМ задействован только при небольших значениях яркости, например, от 0 до 25-30%, а дальше используется непосредственное управление яркостью свечения ламп подсветки, то это не так плохо.

1.12 Вид разъема

VGA – аналоговый разъем подключения монитора к компьютеру. Самый распространенный разъем, который предусмотрен даже в очень старинных компьютерах. Чем длиннее шнур, тем хуже качество передающегося сигнала. С помощью такого соединения можно предавать изображение с разрешением не выше 2048х1536 точек и частотой до 85Гц.

DVI – этот разъем для передачи цифрового сигнала используется в большинстве современных мониторах. Осуществляет более качественную передачу картинки с разрешением не больше 1920х1200 точек и 60 Гц для DVI-I и не больше 2560х1600 для моделей DVI-D.

HDMI – разъем для передачи сигнала на монитор с высокой четкостью. Способен помимо видео, также передавать и аудио. Разрешение видео составляет 4К, а частота – 30Гц.

DisplayPort – обеспечивает наилучшее качество передачи сигнала и высокие тех. характеристики. Крупные модели мониторов с огромным разрешением и частотой подсоединяются к компьютерам в основном при помощи данного типа разъема [7].

SCART, S-Video, AV – аналоговые видеоразъемы, встречающиеся в мониторах, которые обладают доп. характеристиками – ТV-тюнер, акустика и пр. С его помощью можно подсоединить аудиосистему, DVD-плеер.

USB-разъем – обеспечивает подключение к монитору USB устройств, таких, как флешки, или mp3-плейеры. На этих мониторах можно просматривать фото или видео с носителя, без подключения его к компьютеру.

разъемы для мониторов

Рисунок 4 Виды разъемов

1.13 Дополнительные возможности мониторов

Поддержка 3D – на таких мониторах можно просматривать видео и аудио контент в 3D формате. Однако для этого недостаточно купить лишь монитор 3D. Также понадобится совместимая видеокарточка и 3D очки.

Встроенные колонки. Обычно устанавливаются в мониторы, оснащенные ТВ-тюнером. Такие модели удобны при общении по Скайпу, не занимают много места на столе.

Кронштейн VESA – специальное крепление на задней стенке монитора, при помощи которого можно крепить экран на вертикальные поверхности, или потолок.

PIVOT – функция поворота экрана из горизонтальной ориентации в вертикальную. Востребован у веб-дизайнеров, программистов.

Изогнутый монитор. Смотрится эффектно, но самое главное – обеспечивает полное погружение в виртуальный мир. Дело в том, что глазам не нужно перефокусироваться, чтобы воспринимать картинку с краев монитора, что происходит в плоских монитора. Поэтому картинка выглядит более натурально [1].

Сенсорный экран позволяет управлять программным обеспечением ПК, как с экрана планшетного компьютера. ОС Windows 8 создана с учетом возможности управления системой с сенсорного монитора.

Встроенная видеокамера – отличный вариант монитора для общения по Скайпу и другим видео-мессенджерам.

Глава 2. Типы мониторов

2.1 На основе электронно-лучевой трубки

Самый старый тип мониторов, как правило сейчас они практически не применяются, в свое время была роскошь иметь монитор размером 17 дюймов, да еще и с плоским экраном. Можно понять из названия, что данный вид монитора основан на электронно-лучевой трубке. Данная технология была разработана немецким ученым Фердинандом Брауном в 1897 году и первоначально применялась в специальном приборе для измерения переменного тока то бишь в осциллографе. Электронно-лучевая трубка состоит из герметичной стеклянной колбы, внутри которой находиться вакуум.

Монитор на базе электронно-лучевой трубки

Рисунок 5 ЭЛТ-монитор

Один конец колбы узкий и длинный – это горловина, другой широкий и достаточно плоский – это экран. Внутренняя стеклянная поверхность покрыта специальным слоем люминофором – это вещество, которое при бомбардировке заряженными частицами испускает свет. Для цветной ЭЛТ используются довольно сложные составы на основе редкоземельных металлов. Люминофор наноситься в виде наборов точек трех основных цветов красного, зеленого, синего в сочетании этих цветов можно представить любой другой цвет спектра.

Наборы точек люминофора располагаются по треугольным триадам и образуют пиксель.  Пиксель – это элемент картинки и из них формируется изображение. Расстояние между центрами пикселей называется точечным шагом монитора, данный параметр влияет на четкость изображения. Как я и говорил выше данный тип мониторов уже не используется в наше время, прежде всего из-за больших размеров, и вредного излучения электронно-лучевой трубки [5].

2.2 Жидкокристаллические мониторы

Рисунок 6 ЖК монитор

Чаще всего называют ЖК-мониторами, основой их работы являются жидкие кристаллы.

Жидкие кристаллы – это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, также они могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введенные в жидкокристаллический раствор вещества, способные излучать свет под действием электрического поля, можно создать высококачественные изображения.

В ЖК-мониторах используют тонкую пленку из жидких кристаллов, помещенную между двумя стеклянными пластинами. Заряды передаются через пассивную матрицу – сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения. Недостатки пассивной матрицы точка изображения несколько размыта, из-за того, что заряды проникают в соседние области жидкости [4]. Для устранения такого эффекта используется активная матрица где вместо нитей используют прочный экран из транзисторов, что обеспечивает яркое и не искаженное изображение. Экран разделен на независимые ячейки, каждая из которых состоит из четырех частей (для трех основных цветов и одна резервная). Количество таких ячеек по широте и высоте экрана называют разрешением экрана.

К достоинствам таких мониторов стоит отнести:

компактность;

правильная геометрия экрана.

Так же есть и недостатки:

ограниченный угол обзора;

возможность появления битых пикселей. Это те пиксели, которые не зажигаются и представляют собой нерабочую область;

четкое изображение достигается лишь при штатном разрешении.

2.3  LED-мониторы

 LED-мониторыРисунок 7. LED-мониторы

Как можно понять из названия LED (Ligth Emitting Diode) в данных моделях вместо жидких кристаллов используются светодиоды. Которые отвечают за передачу одного или несколько цветов и выступают в качестве одного пикселя. Благодаря тому, что светодиоды являются самостоятельными источниками светового излучения, они позволяют построить картинку с максимальной яркостью и контрастом. Однако у таких мониторов есть существенный недостаток, это сравнительно большой размер самих светодиодов. Применение таких монитор нашло себя в наружной рекламе и огромных экранах, используемых на концертах и т.п. На данный момент только из светодиодов можно составить огромные экраны с очень хорошим качеством изображения и сравнительно низкой стоимостью.

Преимущество диодных мониторов заключается в способе построения экрана в целом. Для этого используются панели меньшего размера, как правило квадратные и имеют свое управление и информационную шину по которой передается изображение. А из этих панелей и строиться цельный экран. При этом фактически не важно какие габариты будут у экрана, главное чтобы контроллер который управляет панелями знал это [1].

В такой конструкции кроется положительная особенность, при поломке одной из панелей большая часть экрана остается рабочей, а при ремонте достаточно заменить сгоревшую панель. Долгий срок службы светодиодов тоже не малозначим.

Вполне возможно, что с развитием электроники и конструкции диодов, можно ожидать и появление настольных мониторов выполненных по технологии LED.

По неопытности некоторые пользователи (да даже встречал продавцов консультантов) которые по ошибке LED монитором называют обычные жидкокристаллические настольные мониторы, в которых диоды используются в качестве подсветки. Правильно будет назвать такое монитор с LED подсветкой.

2.4 Плазменные мониторы

Плазменные мониторыРисунок 8 Плазменные мониторы

Их работы основана на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, проще говоря в плазме. Отсюда и пошло такое название плазма или плазменная панель. Такие виды мониторов достаточно редки, как правило такая технология зачастую используется при создании телевизоров.

Отметим достоинства:

отсутствие мерцания;

отличный обзор под любым углом;

высокая яркость и контрастность.

2.5 ТВ-мониторы

https://vash.market/wp-content/uploads/2016/06/06-14.jpg

Рисунок 9 ТВ-мониторы

Относительно недавно модельный ряд компьютерных комплектующих пополнился вариантами устройств со встроенным ТВ тюнером. Так называемые ТВ-мониторы, которые сочетают в себе функции компьютерного экрана и телевизора [6].

Это полезно, но встает вопрос о диагонали экрана. Дело в том, что девайс с диагональю 21-23 дюйма вряд ли можно использовать как замену телевизору. А модели с большей диагональю неудобно использовать с компьютером. Такой замкнутый круг. Но кого-то это не будет смущать.

ТВ мониторы изготовлены по технологии TFT. Нет ничего удивительного, поскольку такая технология дешевая и простая. Девайсы комплектуются разъемами для подключения внешних устройств: HDMI, USB, SCART, SPIDF и выходом для подключения антенны.

По сути своей они – телевизоры с VGA портом для подключения к компьютеру. Компьютер можно присоединить к такому устройству при помощи разъема HDMI. USB разъем в девайсе, для воспроизведения видео, записанного на USB накопитель. Разъем SCART используется для подключения старых DVD проигрывателей или Blue-Ray плееров. Сходство с телевизором увеличивается тем, что в комплекте с ТВ монитором идет пульт дистанционного управления.

Такой аппарат снабжен неплохими динамиками. Это и понятно – телевизор должен иметь собственную акустическую систему. От обычного компьютерного девайса в этом изделии осталось только одно название и время отклика.

Заключение

Итак, из всего вышесказанного можно сделать общий вывод. Если планируется покупать монитор для офиса, либо работы, то модели с 19-22 дюймовым экраном вполне хватит, а матрица типа TN вполне удовлетворит все потребности.

Для просмотра фильмов лучше взять монитор с IPS матрицей, который отлично отображает все цвета, причем под широким диапазоном углов. Диагональ такого монитора должна начинаться с 24 дюймов. Если вы увлекаетесь компьютерными играми, то также неплохим вариантом будет монитор с матрицей TN, обладающей хорошим откликом.

Для профессиональных дизайнеров, веб-разработчиков и видео/фото-монтажеров лучше купить монитор с P-IPS матрицей, который великолепно передает всю цветовую гамму.

Список литературы

  1. Авдеев, В. А. Периферийные устройства. Интерфейсы, схемотехника, программирование. Учебное пособие / В.А. Авдеев. - М.: ДМК Пресс, 2016. - 848 c.
  2. Аппаратные средства персонального компьютера / С.В. Киселев и др. - М.: Академия, 2016. - 990 c.
  3. Горнец, Н. Н. ЭВМ и периферийные устройства. Компьютеры и вычислительные системы / Н.Н. Горнец, А.Г. Рощин. - М.: Academia, 2012. - 240 c.
  4. Гребенюк, Е. И. Технические средства информатизации / Е.И. Гребенюк, Н.А. Гребенюк. - М.: Academia, 2017. - 352 c.
  5. Елепин, А. П. Компьютерные информационные технологии. Теоретические основы профессиональной деятельности. Учебное пособие / А.П. Елепин, С.В. Соколова. - М.: Академкнига/Учебник, 2018. - 160 c.
  6. Жмакин, А. П. Архитектура ЭВМ (+ CD-ROM) / А.П. Жмакин. - М.: БХВ-Петербург, 2017. - 352 c.
  7. Партыка, Т. Л. Периферийные устройства вычислительной техники / Т.Л. Партыка, И.И. Попов. - М.: Форум, 2016. - 432 c.
  8. Сидоров, В. Д. Аппаратное обеспечение ЭВМ. Учебник / В.Д. Сидоров, Н.В. Струмпэ. - М.: Academia, 2016. - 336 c.
  9. Старков, В. В. Архитектура персонального компьютера. Организация, устройство, работа / В.В. Старков. - М.: Горячая линия - Телеком, 2018. - 538 c.
  10. Струмпэ, Н. В. Аппаратное обеспечение ЭВМ. Практикум / Н.В. Струмпэ, В.Д. Сидоров. - М.: Академия, 2016. - 160 c.
  11. Шевченко, В.П. Вычислительные системы, сети и телекоммуникации (для бакалавров) / В.П. Шевченко. - Москва: Огни, 2017. - 980 c.