Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Устройство персонального компьютера ( Системная плата)

Содержание:

Введение

Мой выбор пал на эту тему не случайно, ведь все стороны моей жизнедеятельности связаны с персональным компьютером и его устройством. Я помогаю людям в ремонте этих технических средств, поэтому для меня это особо актуально.

В современном мире компьютеры заняли прочную позицию и уже сложно представить повседневную жизнь без компьютера. «Компьютер на каждом столе и в каждом доме» - это слоган компании «Microsoft», придуманный когда-то её главой Биллом Гейтсом, и эти слова стали пророческими.

Название "компьютер" пришло из английского языка и переводится как «вычислитель». Электронная вычислительная машина (ЭВМ) или компьютер – это аппаратурно-программный комплекс, необходимый для обработки данных. Обработка данных представляет собой осуществление неких действий и вычислении, помимо этого к ней относится ввод, вывод и сохранение данных.

Изначально применялись огромные непростые вычислительные машины, после них создали более совершенное устройство, которое получило название персональный компьютер. Итак, персональный компьютер (или коротко ПК/PC) представляет собой широко используемую электровычислительную машину, имеющую некрупные габариты и небольшую стоимость по сравнению со своим предшественником ЭВМ. За прошедшие годы многое изменилось, например, внешний вид современного ПК, а производительность (число операций, выполняемых в единицу времени) современных ПК по сравнению с первыми возросла в тысячи и более раз.

Несмотря на то, что компьютеры стали обыденностью, очень многие имеют слабое представление о том, что собой представляет персональный компьютер, из чего он состоит и что требуется для его работы. В курсовой работе мы попробуем разобраться с этими вопросами.

Глава 1. Внутреннее устройство ПК

Практически любой современный компьютер состоит из нескольких основных элементов:

- системный блок - это ящик, в который установлены различные устройства. Эти устройства и образуют основную вычислительную мощь компьютера. Они выполнены в виде печатных плат, которые через специальные разъемы (слоты) устанавливаются на одну самую большую - главную плату. Эта плата называется материнской или системной.

- монитор - позволяет визуализировать все процессы обработки данных компьютером.

- клавиатура – устройство, позволяющее вводить в компьютер данные или задавать команды

- мышь - это специальный манипулятор, позволяющий управлять графическим интерфейсом программ и операционной системы.

Ну а теперь предлагаю разобраться с каждым элементом персонального компьютера по отдельности.

1.1 Корпус системного блока

Cистемный блок (рис.1) с корпусом формфактора ATX. Правая боковая панель снята. В передней части (справа на фото) 5,25" и 3,5" отсеки с установленными оптическим приводом и жёстким диском, вентилятор охлаждения системного блока, слева — блок питания, материнская плата с установленными на ней центральным процессором с кулером, видеокартой, планками (модулями) оперативной памяти

Систе́мный блок (англ. computer case, сленг. системник) — физически представляет собой шасси, которое наполнено аппаратным обеспечением для создания компьютера.

Функционально представляет собой основу для создания и дальнейшего расширения вычислительной системы.

Содержимое системного блока в значительной степени зависит от вычислительной системы в целом, её задач, целей и форм-фактора. В случае рационального использования, системный блок в большей степени соответствует потребностям вычислительной системы. В зависимости от вычислительной системы, в системном блоке могут находиться различные компоненты аппаратного обеспечения:

- вычислительный блок в виде главной/системной/материнской платы с установленным на ней процессором, ОЗУ;

- в материнскую плату могут быть установлены карты расширения (видеокарта, звуковая карта, сетевая плата) в случае крупного размера имеющие специальные средства крепления внутри шасси;

- также в шасси могут быть установлены блок(и) питания.

Кроме того, в конструкции шасси предусмотрены стандартизированные отсеки (англ.) русск. для периферийных устройств, заполняемые в частности накопителями — жёстким диском (дисками), SSD, оптическим приводом, кардридером и т. п.

Фронтальная панель корпуса компьютера может быть оборудована кнопками включения и перезагрузки, индикаторами питания и накопителей, гнёздами для подключения наушников и микрофона, интерфейсами передачи данных (USB, FireWire).

В случае использования в составе центра обработки данных (ЦОД) или вычислительного кластера монтируемого в стойку, устанавливаются средства телеметрического управления и контроля (например на основе коммутаторов или управляющего программного обеспечения (ПО), ориентированного на веб-интерфейс).

В основном (существуют специальные решения «безотвёрточного монтажа»), содержимое системного блока монтируется при помощи специально разработанных крепёжных элементов

Корпус, защищающий внутренние компоненты компьютера от внешнего воздействия и механических повреждений, поддерживающий необходимый температурный режим внутри, экранирующий создаваемое внутренними компонентами электромагнитное излучение, может быть представлен различными по форме и пропорциям стандартными шасси (размеры указаны в миллиметрах, Ш x Г x В):

- горизонтальные:

Desktop (533 × 419 × 152)

FootPrint (406 × 406 × 152)

SlimLine (406 × 406 × 101)

UltraSlimLine (381 × 352 × 75)

- вертикальные:

MiniTower (178 × 432 × 432)

MidiTower (183 × 432 × 490)

Full (или Big) Tower (190 × 482 × 820)

SuperFullTower (разные размеры)

Указанные размеры являются ориентировочными и могут изменяться в зависимости от производителя и модели корпуса.

Для установки в стойку, высота корпуса выбирается исходя из стоечной единицы измерения.

Шасси для системных блоков массово изготавливают заводским способом из деталей на основе стали, алюминия и пластика. Для самобытной отделки энтузиасты широко используют такие материалы, как древесина или органическое стекло. Для привлечения внимания к проблемам защиты окружающей среды придуман корпус из гофрокартона.

Рассмотрим составные части системного блока, к ним относятся: процессор, системная плата, оперативная память, жёсткий диск, видеокарта, блок питания, дисковод.

1.2. Процессор

Процессор выполняет четыре основных задачи: Получает инструкции для запуска программ, декодирует инструкции, выполняет инструкции, записывает выводной поток в память компьютера
При выполнении этих задач процессор фактически действует как «мозг» компьютера, анализируя операции по мере их поступления и определяя, какие требуется обработать сразу, а какие поставить в очередь.
Количество операций, которые процессор может обработать сразу, зависит от числа ядер (основных вычислительных модулей) и числа потоков (последовательности запрограммированных инструкций) в процессоре. Скорость процессора, или скорость обработки операций, измеряется в гигагерцах-(ГГц).
В самых первых процессорах было одно ядро, которое обрабатывало одну задачу за раз, и один канал, или поток, для ввода инструкций. Современные процессоры могут обработать больше данных за меньшее время, потому что в каждом чипе больше ядер, и в большинстве случаев они также имеют несколько потоков, работающих параллельно.

Многоядерные процессоры:
С добавлением ядер в каждый кристалл процессора одновременно может обрабатываться больше инструкций. Вот почему в современных процессорах несколько ядер. В многоядерных процессорах в один кристалл встроены дополнительные блоки обработки данных. Таким образом, в двухъядерном процессоре имеется два ядра, в четырехъядерном процессоре четыре ядра, а в новейшем процессоре Intel Core Extreme Edition 10 ядер!

Многопоточность:
Чтобы еще больше увеличить производительность, во многих современных процессорах Intel® также используется технология Intel Hyper-Threading (Intel HT), которая позволяет на каждом ядре одновременно запускать больше потоков.
Технология Hyper-Threading повышает вычислительную мощность процессора, позволяя нескольким потокам работать параллельно на каждом ядре процессора. Это похоже на переход с однополосной магистрали на двухполосную, где каждое ядро способно выполнить больше операций одновременно. В результате может повышаться общая производительность, особенно когда пользователь запускает одновременно несколько ресурсоемких приложений.

1.3. Системная плата

Системная плата (материнская плата) является тем самым связующим звеном (точнее, целым комплексом связующих звеньев), без которого работа ПК в целом будет невозможной.

Непосредственно в разъёмы на материнской плате вставляются следующие устройства:

- процессор;

- модули памяти;

- видеокарта;

- звуковая карта;

- любые другие устройства со стандартными интерфейсами системной платы (сетевые адаптеры, устройства обработки видео и т.д.)

Устройства хранения информации (жёсткие диски, BlueRay и прочие) подключаются к материнке не непосредственно, а при помощи стандартных кабелей. В настоящее время для таких устройств используется интерфейс SATA. Кроме того, существуют такие же разъёмы для подключения резервных хранилищ информации, располагающихся вне системного блока.

Различные периферийные устройства (клавиатура, мышь, принтер, флешки и пр.) могут быть подключены к плате при помощи интерфейса USB. Разъёмы USB могут находиться как непосредственно на плате, так и подключены к ней при помощи кабелей.

Иногда на материнках для обеспечения совместимости с некоторыми моделями клавиатур и мышей может использоваться интерфейс PS/2, разъём которого также расположен на ней.

Платы со встроенными видеоадаптерами имеют разъём видеоадаптера, предназначенный для подключения к монитору.

К её главным составляющим относят:

- разъём для подключения ЦП, т.н. «сокет»;

- специальные крепёжные элементы для подключения системы охлаждения ЦП;

- несколько разъёмов для подключения оперативной памяти;

- микросхемы постоянной памяти;

- микросхемы чипсета;

- формирователи стандартных интерфейсов т.н. «шин» для работы с внешними устройствами;

- разъёмы для подключения внешних устройств к шинам (т.н. слоты расширения);

- контроллеры и разъёмы для подключения периферийных устройств;

- разъёмы для подключения основного и дополнительного электропитания;

- формирователи питающих напряжений для процессора, памяти и шин;

- простые звуковые адаптеры (на большинстве современных материнок);

- разъёмы для подключения кнопки включения и сброса ПК и индикаторов передней панели;

- другие устройства индикации и отладки (опционально).

Чипсет. Главная деталь любой системной платы. Именно благодаря ему ЦП может выполнять программы и обрабатывать данные. В настоящее время со всеми устройствами, кроме оперативной памяти и основных шин, процессор «общается» только через чипсет. До 2011 года чипсет физически разделялся на две микросхемы – северный и южный мосты. Северный мост использовался для связи с быстрыми устройствами, сопоставимых по быстродействию с процессором. Южный мост – с более медленными, быстродействие которых было в десятки, а то и в тысячи раз меньше, чем быстродействие процессора. Но впоследствии, практически все составляющие компоненты северного моста были перенесены с материнской платы в процессор, что позволило примерно на треть увеличить общее быстродействие системы. Поэтому в настоящее время чипсет используется для обмена данными с медленными шинами и другими периферийными устройствами.

BIOS и CMOS. На каждой материнской плате располагается микросхема постоянной памяти, содержащая набор процедур, обеспечивающих запуск компьютера и подготовку его к загрузке операционной системы. Набор этих процедур называется BIOS. Это также аббревиатура от английского «basic input/output system» — базовая система ввода/вывода.

Кроме этих функций BIOS позволяет проводить более тонкую настройку параметров как материнской платы, так всего ПК. С её помощью можно ускорить/замедлить процессор, выбрать способ загрузки операционной системы, поменять системное время и так далее.

Хранение этих настроек частично возложено на устройство CMOS – небольшой объём энергонезависимой памяти, питающейся от сменной батарейки. При выключении питания ПК эти настройки сохраняются и используются при следующем включении. Срок службы батарейки составляет от 3 до 10 лет.

1.4. Память ПК

1.4.1 Оперативная память

Оперативная память — это временная память компьютера, которая работает при включенном состоянии компьютера и которая нужна для нормальной работы программ и процессов. Как только вы выключаете компьютер и ли перезагружаете, оперативка стирается (грамотно говорить — обнуляется)

ОЗУ большинства современных компьютеров представляет собой модули динамической памяти, содержащие полупроводниковые ИС ЗУ, организованные по принципу устройств с произвольным доступом. Память динамического типа дешевле, чем статического, и её плотность выше, что позволяет на той же площади кремниевого кристалла разместить больше ячеек памяти, но при этом её быстродействие ниже. Статическая память, наоборот, более быстрая память, но она и дороже. В связи с этим основную оперативную память строят на модулях динамической памяти, а память статического типа используется для построения кэш-памяти внутри микропроцессора.

Память динамического типа

DRAM

Экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариантах два конденсатора). Такой вид памяти, во-первых, дешевле (один конденсатор и один транзистор на 1 бит дешевле нескольких транзисторов входящих в триггер), и, во-вторых, занимает меньшую площадь на кристалле, там, где в SRAM размещается один триггер, хранящий 1 бит, можно разместить несколько конденсаторов и транзисторов для хранения нескольких бит.

Но DRAM имеет и недостатки. Во-первых, работает медленнее, поскольку, если в SRAM изменение управляющего напряжения на входе триггера сразу очень быстро изменяет его состояние, то для того, чтобы изменить состояние конденсатора, его нужно зарядить или разрядить. Перезаряд конденсатора гораздо более длителен (в 10 и более раз), чем переключение триггера, даже если ёмкость конденсатора очень мала. Второй существенный недостаток — конденсаторы со временем разряжаются. Причём разряжаются они тем быстрее, чем меньше их электрическая ёмкость и больше ток утечки, в основном, это утечка через ключ.

Именно из-за того, что заряд конденсатора постепенно уменьшается во времени, память на конденсаторах получила своё название DRAM — динамическая память. Поэтому, дабы не потерять содержимое памяти, величина заряда конденсаторов периодически восстанавливается («регенерируется») через определённое время, называемое циклом регенерации, для современных микросхем памяти это время не должно превышать 2 мс. Для регенерации в современных микросхемах достаточно выполнить циклограмму чтения по всем строкам запоминающей матрицы. Процедуру регенерации выполняет процессор или контроллер памяти. Так как для регенерации памяти периодически приостанавливается обращение к памяти, это снижает среднюю скорость обмена с этим видом ОЗУ.

Память статического типа - SRAM (память).

ОЗУ, которое не надо регенерировать обычно схемотехнически выполненное в виде массива триггеров, называют статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти — скорость. Поскольку триггеры являются соединением нескольких логических вентилей, а время задержки на вентиль очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, чем ячейка динамической памяти, даже если они изготавливаются групповым методом миллионами на одной кремниевой подложке. Кроме того, группа транзисторов входящих в статический триггер занимает гораздо больше площади на кристалле, чем ячейка динамической памяти, поскольку триггер состоит минимум из 2 вентилей, в каждый вентиль входит по меньшей мере один транзистор, а ячейка динамической памяти — только из одного транзистора и одного конденсатора. Память статического типа используется для организации сверхбыстродействующего ОЗУ, обмен информацией с которым критичен для производительности системы.

1.4.2.Жёсткий диск (HDD)

Накопи́тель на жёстких магни́тных ди́сках, или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск, винчестер — запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от гибкого диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего диоксида хрома — магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм[1]), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Двигатели, предназначенные для вращения магнитных пластин HDD и блок управляющей электроники - руководящий всеми процессами.

Для хранения информации HDD форматируют, то есть он разбит на равные дорожки, которые разбиваются на секторы свою очередь образующие кластеры.

Необходимо знать, что сам жёсткий диск не герметичен, а герметичен его гермоблок, вскрытие которого непременно приведёт к неработоспособности всего жёсткого диска.

1.4.3.Жёсткий диск (SSD)

Твердотельный накопитель (англ. solid-state drive, SSD) — компьютерное энергонезависимое немеханическое запоминающее устройство на основе микросхем памяти, альтернатива HDD. Кроме микросхем памяти, SSD содержит управляющий контроллер. Наиболее распространённый вид твердотельных накопителей использует для хранения информации флеш-память типа NAND, однако существуют варианты, в которых накопитель создаётся на базе DRAM-памяти, снабжённой дополнительным источником питания — аккумулятором

По сравнению с традиционными жёсткими дисками (HDD) твердотельные накопители имеют меньший размер и вес, являются беззвучными, а также многократно более устойчивы к повреждениям (например, к падению) и имеют гораздо бóльшую скорость записи. В то же время, они имеют в несколько раз бóльшую стоимость в расчете на гигабайт и меньшую износостойкость (ресурс записи).

1.4.4.Жёсткий диск(М2)

M.2 (ранее известный как Next Generation Form Factor и NGFF) — спецификация компактных компьютерных карт расширения и их разъёмов. Был создан в качестве замены формату mSATA и Mini PCI-E, использовавшему физический разъём и размеры модулей PCI Express Mini Card. Стандарт M.2 допускает более разнообразные размеры модулей, как по ширине, так и по длине. Формат M.2 часто используется для реализации производительных твердотельных накопителей (на базе флеш-памяти, SSD), особенно при использовании в компактных устройствах, таких как ультрабуки и планшеты.

Интерфейсы, выведенные на разъём M.2, являются надмножеством интерфейса SATA Express. Фактически, M.2 является более компактной реализацией SATA Express (предоставляет поддержку шин PCI Express 3.0 и SATA 3.0), дополненной внутренним интерфейсом USB 3.0. Платы M.2 могут иметь различные ключевые вырезы для обозначения конкретного варианта используемого интерфейса

Карты расширения M.2 могут предоставлять различные функции, например: Wi-Fi, Bluetooth, спутниковая навигация, NFC-радиосвязь, цифровое радио, Wireless Gigabit Alliance (WiGig), Wireless WAN (WWAN). В виде модулей M.2 часто изготавливают быстрые и компактные твердотельные флеш-накопители (SSD). На разъём M.2 выводятся шины PCI Express 3.0, Serial ATA 3.0 и USB 3.0 (включая обратную совместимость с USB 2.0). Спецификация SATA 3.2 по состоянию на август 2013 определила формат «SATA M.2» для носителей информации.

В составе M.2 реализован PCI Express 4x (4 линии) и один порт SATA 3.0 со скоростью до 6 Гбит/с, поэтому в форм-факторе M.2 могут быть реализованы как устройства PCI Express, так и накопители SATA. Используется стандартный PCI Express без каких-либо дополнительных слоёв абстракции. Группа PCI-SIG выпустила спецификацию M.2 версии 1.0 в декабре 2013 года.

Для карт расширения M.2 доступно три варианта реализации логического интерфейса и набора команд, по аналогии со стандартом SATA Express:

«Legacy SATA»

Используется для SSD с SATA интерфейсом, драйвером AHCI и скоростями до 6.0 Гбит/с (SATA 3.0)

«SATA Express» с использованием AHCI

Используется для SSD с интерфейсом PCI Express и драйвером AHCI (для совместимости с большим количеством операционных систем). Из-за использования AHCI производительность может быть несколько ниже оптимальной (получаемой с NVMe), так как AHCI был разработан для взаимодействия с более медленными накопителями с медленным последовательным доступом (например, НЖМД), а не для SSD с быстрым случайным доступом.

«SATA Express» с использованием NVMe

Используется для SSD с интерфейсом PCI Express и высокопроизводительным драйвером NVMe, созданным для работы с быстрыми флеш-накопителями. NVMe был разработан с учётом низких задержек и параллелизма SSD с интерфейсом PCI Express. NVMe лучше использует параллелизм в управляющем компьютере и программном обеспечении, требует меньше стадий при передаче данных, предоставляет более глубокую очередь команд и более эффективную обработку прерываний.

Печатные платы карт расширения M.2 на одном из краёв предоставляют ножевой разъём с 75 позициями. В зависимости от типа модуля, вместо части позиций сделаны ключевые разрезы. Слот M.2 на материнской плате может иметь заглушки на некоторых ключевых позициях, определяя тип модулей и интерфейсы, совместимые с ним. По состоянию на апрель 2014 года, слоты выполнялись с единственной заглушкой либо в позиции B, либо в позиции M. Например, модуль M.2 с двумя ключевыми разрезами B и M может использовать до двух линий PCI Express и совместим с большим количеством слотов, тогда как карты M.2 с ключом в позиции M могут использовать до 4 линий PCI Express. Оба варианта также могут использовать линии SATA. Сходная система ключей используется для карт M.2 с интерфейсом USB 3.0.

Типы карт M.2 маркируются кодом по схеме WWLL-HH-K-K или WWLL-HH-K, где WW и LL — размеры модуля в ширину и длину в миллиметрах. В HH кодируется, является ли модуль односторонним или двухсторонним, а также максимальная допустимая высота (толщина) размещённых на нём компонентов, например «D2». Часть K-K обозначает ключевые разрезы; если модуль использует лишь один ключ, используется одна буква K.

Наиболее популярные форм-факторы M.2 по состоянию на 2016 год: ширина 22 мм, длина 80 или 60 мм (M.2-2280 и M.2-2260), реже 42 мм. Многие ранние M.2 накопители и материнские платы использовали интерфейс SATA. Некоторые материнские платы также реализуют PCI Express. Для SSD наиболее популярны ключи B (SATA и PCIe x2) и M (SATA и PCIe x4). Для подключения карт расширения, например WiFi, используются модули размера 1630 и 2230 и ключи A или E.

Кроме сменных карт расширения, стандарт M.2 определяет вариант модулей, припаиваемых к материнской плате в процессе её изготовления

1.5. Видеокарта

Видеока́рта (также видеоада́птер, графический ада́птер, графи́ческая пла́та, графи́ческая ка́рта, графи́ческий ускори́тель) — устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.

Однако эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения — качество видеосигнала (чёткость изображения) очень мало связано с ценой и техническим уровнем современной видеокарты. В первую очередь, сейчас под графическим адаптером понимают устройство с графическим процессором — графический ускоритель, который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX и Vulcan на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

Обычно видеокарта выполнена в виде печатной платы (плата расширения) и вставляется в слот расширения, универсальный либо специализированный (AGP, PCI Express). Также широко распространены и встроенные (интегрированные) в системную плату видеокарты — как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ; в этом случае устройство, строго говоря, не может быть названо видеокартой.

Современная видеокарта состоит из следующих частей:

- Графический процессор

- Видеоконтроллер.

- Видео-ПЗУ.

- Видео-ОЗУ.

- RAMDAC и TMDS

- Система охлаждения

Графический процессор (Graphics processing unit (GPU) — графическое процессорное устройство) занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Однако архитектура GPU прошлого поколения обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

Видеоконтроллер отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (AMD, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство (ПЗУ), в которое записаны BIOS видеокарты, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор.

BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, задаёт все низкоуровневые параметры видеокарты, в том числе рабочие частоты и питающие напряжения графического процессора и видеопамяти, тайминги памяти. Также VBIOS содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

Видео-ОЗУ. Видеопамять выполняет функцию кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, GDDR2, GDDR3, GDDR4, GDDR5 и HBM. Следует также иметь в виду, что, помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры Uniform Memory Access в качестве видеопамяти используется часть системной памяти компьютера.

RAMDAC — Random Access Memory Digital-to-Analog Converter) служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока: три цифро-аналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий — RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме даёт 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП.

TMDS (Transition-minimized differential signaling — дифференциальная передача сигналов с минимизацией перепадов уровней) передатчик цифрового сигнала без ЦАП-преобразований. Используется при DVI-D, HDMI, DisplayPort подключениях. С распространением ЖК-мониторов и плазменных панелей нужда в передаче аналогового сигнала отпала — в отличие от ЭЛТ они уже не имеют аналоговую составляющую и работают внутри с цифровыми данными. Чтобы избежать лишних преобразований, Silicon Image разрабатывает TMDS.

Коннектор

Видеоадаптеры MDA, Hercules, EGA и CGA оснащались 9-контактным разъёмом типа D-Sub. Изредка также присутствовал коаксиальный разъём Composite Video, позволяющий вывести чёрно-белое изображение на телевизионный приёмник или монитор, оснащённый НЧ-видеовходом.

Видеоадаптеры VGA и более поздние обычно имели всего один разъём VGA (15-контактный D-Sub). Изредка ранние версии VGA-адаптеров имели также разъём предыдущего поколения (9-контактный) для совместимости со старыми мониторами. Выбор рабочего выхода задавался переключателями на плате видеоадаптера.

В настоящее время платы оснащают разъёмами DVI или HDMI, либо DisplayPort в количестве от одного до трёх (некоторые видеокарты ATi последнего поколения оснащаются шестью коннекторами).

Порты DVI и HDMI являются эволюционными стадиями развития стандарта передачи видеосигнала, поэтому для соединения устройств с этими типами портов возможно использование переходников (разъём DVI к гнезду D-Sub — аналоговый сигнал, разъём HDMI к гнезду DVI-D — цифровой сигнал, который не поддерживает технические средства защиты авторских прав (англ. High Bandwidth Digital Copy Protection, HDCP), поэтому без возможности передачи многоканального звука и высококачественного изображения). Порт DVI-I также включает аналоговые сигналы, позволяющие подключить монитор через переходник на старый разъём D-SUB (DVI-D не позволяет этого сделать).

DisplayPort позволяет подключать до четырёх устройств, в том числе аудиоустройства, USB-концентраторы и иные устройства ввода-вывода.

9-контактный разъём S-Video TV-Out, DVI и D-Sub. Также на видеокарте могут быть размещены композитный и компонентный S-Video видеовыход; также видеовход (обозначаются, как ViVo)

Система охлаждения предназначена для сохранения температурного режима видеопроцессора и (зачастую) видеопамяти в допустимых пределах.

Также правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же, как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

Кроме шины данных, второе узкое место любого видеоадаптера — это пропускная способность (англ. bandwidth) памяти самого видеоадаптера. Причём изначально проблема возникла даже не столько из-за скорости обработки видеоданных (это сейчас часто стоит проблема информационного «голода» видеоконтроллера, когда он данные обрабатывает быстрее, чем успевает их читать/писать из/в видеопамять), сколько из-за необходимости доступа к ним со стороны видеопроцессора, центрального процессора и RAMDAC. Дело в том, что при высоких разрешениях и большой глубине цвета для отображения страницы экрана на мониторе необходимо прочитать все эти данные из видеопамяти и преобразовать в аналоговый сигнал, который и пойдёт на монитор, столько раз в секунду, сколько кадров в секунду показывает монитор. Возьмём объём одной страницы экрана при разрешении 1024x768 точек и глубине цвета 24 бит (True Color), это составляет 2,25 МБ. При частоте кадров 75 Гц необходимо считывать эту страницу из памяти видеоадаптера 75 раз в секунду (считываемые пикселы передаются в RAMDAC, и он преобразовывает цифровые данные о цвете пиксела в аналоговый сигнал, поступающий на монитор), причём ни задержаться, ни пропустить пиксел нельзя, следовательно, номинально потребная пропускная способность видеопамяти для данного разрешения составляет приблизительно 170 МБ/с, и это без учёта того, что необходимо и самому видеоконтроллеру писать и читать данные из этой памяти. Для разрешения 1600x1200x32 бит при той же частоте кадров 75 Гц номинально потребная пропускная составляет уже 550 МБ/с. Для сравнения, процессор Pentium II имел пиковую скорость работы с памятью 528 МБ/с. Проблему можно было решать двояко — либо использовать специальные типы памяти, которые позволяют одновременно двум устройствам читать из неё, либо ставить очень быструю память. О типах памяти и пойдёт речь ниже.

- FPM DRAM (Fast Page Mode Dynamic RAM — динамическое ОЗУ с быстрым страничным доступом) — основной тип видеопамяти, идентичный используемой в системных платах. Использует асинхронный доступ, при котором управляющие сигналы не привязаны жёстко к тактовой частоте системы. Активно применялся примерно до 1996 г.

- VRAM (Video RAM — видео ОЗУ) — так называемая двухпортовая DRAM. Этот тип памяти обеспечивает доступ к данным со стороны сразу двух устройств, то есть имеется возможность одновременно писать данные в какую-либо ячейку памяти, и одновременно с этим читать данные из какой-нибудь соседней ячейки. За счёт этого позволяет совмещать во времени вывод изображения на экран и его обработку в видеопамяти, что сокращает задержки при доступе и увеличивает скорость работы. То есть RAMDAC может свободно выводить на экран монитора раз за разом экранный буфер, ничуть не мешая видеопроцессору осуществлять какие-либо манипуляции с данными. Но это всё та же DRAM, и скорость у неё не слишком высокая.

- WRAM (Window RAM) — вариант VRAM, с увеличенной на ~25 % пропускной способностью и поддержкой некоторых часто применяемых функций, таких, как отрисовка шрифтов, перемещение блоков изображения и т. п. Применяется практически только на акселераторах фирмы Matrox и Number специальных методов доступа и обработки данных. Наличие всего одного производителя данного типа памяти (Samsung) сильно сократило возможности её использования. Видеоадаптеры, построенные с использованием данного типа памяти, не имеют тенденции к падению производительности при установке больших разрешений и частот обновления экрана, на однопортовой же памяти в таких случаях RAMDAC всё большее время занимает шину доступа к видеопамяти, и производительность видеоадаптера может сильно упасть.

- EDO DRAM (Extended Data Out DRAM — динамическое ОЗУ с расширенным временем удержания данных на выходе) — тип памяти с элементами конвейеризации, позволяющий несколько ускорить обмен блоками данных с видеопамятью приблизительно на 25 %.

- SDRAM (Synchronous Dynamic RAM — синхронное динамическое ОЗУ) пришёл на замену EDO DRAM и других асинхронных однопортовых типов памяти. После того, как произведено первое чтение из памяти или первая запись в память, последующие операции чтения или записи происходят с нулевыми задержками. Этим достигается максимально возможная скорость чтения и записи данных.

- DDR SDRAM (Double Data Rate) — вариант SDRAM с передачей данных по двум срезам сигнала, получаемым в результате удвоения скорости работы. Дальнейшее развитие пока происходит в виде очередного уплотнения числа пакетов в одном такте шины — DDR2 SDRAM (GDDR2), DDR3 SDRAM и т. д.

- SGRAM (Synchronous Graphics RAM — синхронное графическое ОЗУ) вариант DRAM с синхронным доступом. В принципе, работа SGRAM полностью аналогична SDRAM, но дополнительно поддерживаются ещё некоторые специфические функции, типа блоковой и масочной записи. В отличие от VRAM и WRAM, SGRAM является однопортовой, однако может открывать две страницы памяти как одну, эмулируя двухпортовость других типов видеопамяти.

- MDRAM (Multibank DRAM — многобанковое ОЗУ) — вариант DRAM, разработанный фирмой MoSys, организованный в виде множества независимых банков объёмом по 32 КиБ каждый, работающих в конвейерном режиме.

- RDRAM (RAMBus DRAM) — память, использующая специальный канал передачи данных (Rambus Channel), представляющий собой шину данных шириной в один байт. По этому каналу удаётся передавать информацию очень большими потоками, наивысшая скорость передачи данных для одного канала на сегодняшний момент составляет 1600 МБ/с (частота 800 МГц, данные передаются по обоим срезам импульса). На один такой канал можно подключить несколько чипов памяти. Контроллер этой памяти работает с одним каналом Rambus, на одной микросхеме логики можно разместить четыре таких контроллера, значит, теоретически можно поддерживать до 4 таких каналов, обеспечивая максимальную пропускную способность в 6,4 ГБ/с. Минус этой памяти — нужно читать информацию большими блоками, иначе её производительность резко падает.

Объём памяти большего количества современных видеокарт варьируется от 256 МБ (например, AMD Radeon HD 4350) до 24 ГБ (например, NVIDIA GeForce GTX TITAN RTX). Поскольку доступ к видеопамяти GPU и другими электронным компонентами должен обеспечивать желаемую высокую производительность всей графической подсистемы в целом, используются специализированные высокоскоростные типы памяти, такие, как SGRAM, двух-портовых (англ. dual-port) VRAM, WRAM, другие. Приблизительно с 2003 года видеопамять, как правило, базировалась на основе DDR технологии памяти SDRAM, с удвоенной эффективной частотой (передача данных синхронизируется не только по нарастающему фронту тактового сигнала, но и ниспадающему). И в дальнейшем DDR2, GDDR3, GDDR4, GDDR5 и на момент 2016 года GDDR5X. С выходом серии высокопроизводительных видеокарт AMD Fury совместно с уже устоявшейся на рынке памятью GDDR начала использоваться память нового типа HBM, предлагая значительно большую пропускную способность и упрощение самой платы видеокарты, за счёт отсутствия необходимости разводки и распайки чипов памяти. Пиковая скорость передачи данных (пропускная способность) памяти современных видеокарт достигает 480 ГБ/с для типа памяти GDDR5X (например, у NVIDIA TITAN X Pascal) и 672 ГБ/с для типа памяти GDDR6 (например, у TITAN RTX).

Видеопамять используется для временного сохранения, помимо непосредственно данных изображения, и другие: текстуры, шейдеры, вершинные буферы, Z-буфер (удалённость элементов изображения в 3D-графике), и тому подобные данные графической подсистемы (за исключением, по большей части данных Video BIOS, внутренней памяти графического процессора и т. п.) и коды.

1.5.Блок питания

Компьютерный блок питания (или сокращённо — блок питания, БП) — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электроэнергией постоянного тока путём преобразования сетевого напряжения до требуемых значений.

Также в состав компьютера могут входить блоки преобразования уровня напряжения следующей ступени — третичные блоки питания и т. д. Примером таких преобразователей могут служить модуль питания центральных процессоров (в том числе модернизируемых), графических процессоров, а также устройства, требующие повышения напряжения или изменения характеристик тока — переменного, с изменением фазы.

В некоторой степени блок питания также выполняет функции стабилизации и защиты от незначительных помех питающего напряжения. Как компонент, занимающий значительную часть внутри корпуса компьютера, несёт в своём составе (либо монтируемые на корпусе БП) компоненты охлаждения частей внутри корпуса компьютера.

КПД «типового» блока питания, описанного выше, имеет величину порядка 65-70 %. Для получения бо́льших величин применяются специальные схемотехнические решения. Следует отметить, что КПД равен отношению мощности, выдаваемой для потребления компонентами компьютера, к мощности, потребляемой от сети. В характеристиках БП указана максимальная мощность, выдаваемая для потребления компонентами компьютера (т.е., чем ниже КПД, тем выше мощность, потребляемая от сети).

Сертификация 80 PLUS (как часть принятого в 2007 году стандарта энергосбережения Energy Star 4.0) подразумевает сертификацию компьютерных блоков питания на соответствие определённым нормативам по эффективности энергопотребления: КПД БП должен быть не менее 80 % при 20, 50 и 100 % нагрузке относительно номинальной мощности БП, а коэффициент мощности должен быть 0,9 или выше при 100 % нагрузке.

И хотя первоначально сертификация по стандарту 80 PLUS проводилась только для использования в сетях с напряжением 115 В (которые распространены, к примеру, в США, но не на территории России), и поэтому КПД блоков питания, сертифицированных по стандарту 80 PLUS, может быть ниже 80 % в сетях 220/230 В, однако последующие уровни спецификации, начиная с 80 PLUS Bronze, сертифицировались и для применения в сетях 230 В. Тем не менее, сертифицированные по стандарту 80 PLUS БП могут иметь КПД ниже 80 % при нагрузках менее 20 %, что достаточно важно, так как большинство ПК редко работают в режиме максимальной потребляемой мощности, а гораздо чаще простаивают. Также КПД может быть ниже заявленного в условиях эксплуатации БП при температуре, отличной от комнатной (при которой проводится сертификация).

В 2008 году к стандарту были добавлены уровни сертификации Bronze, Silver, Gold, в 2009 — Platinum, а в 2012 — Titanium. Нормативный минимальный КПД сертифицированных БП представлен в таблице (КПД при 10%-ной нагрузке регулируется только для Titanium):

Например, 600-ваттный блок питания, сертифицированный 80 PLUS Gold, при полной нагрузке будет потреблять от сети 660-682 вт, из которых 60-82 вт идёт на нагрев БП. Таким образом, БП с высоким КПД более устойчивы к перегреву и, как правило, имеют более тихую систему охлаждения.

Потребляемая и рассеиваемая мощность-мощность, отдаваемая в нагрузку БП, зависит от мощности компьютерной системы и варьируется в пределах от 50 Вт (встраиваемые платформы малых форм-факторов) до 2 кВт (наиболее высокопроизводительные рабочие станции, серверы или мощные игровые машины).

В случае построения кластера расчёт необходимого количества подводимой энергии учитывает потребляемую кластером мощность, мощность систем охлаждения и вентиляции, КПД которых, в свою очередь, отличный от единицы. По данным компании APC by Schneider Electric, на каждый Ватт потребляемой серверами мощности требуется обеспечение 1,06 Ватта систем охлаждения. Особую важность грамотный расчёт имеет при создании центра хранения и обработки данных (ЦОД) с резервированием по формуле N+1.

1.6. Дисковод(CD-ROM)

CD-ROM (англ. Compact Disc Read-Only Memory, читается: «сиди-ро́м») — разновидность компакт-дисков с записанными на них данными, доступными только для чтения (read-only memory — память «только для чтения»). CD-ROM — доработанная версия CD-DA (диска для хранения аудиозаписей), позволяющая хранить на нём прочие цифровые данные (физически от первого ничем не отличается, изменён только формат записываемых данных). Позже были разработаны версии с возможностью как однократной записи (CD-R), так и многократной перезаписи (CD-RW) информации на диск. Дальнейшим развитием CD-ROM стали DVD-ROM.

CD-ROM — популярное и самое дешёвое средство для распространения программного обеспечения, компьютерных игр, мультимедиа и прочих данных. В начале 2000-х годов CD-ROM (а позднее и DVD-ROM) стал основным носителем для переноса информации между компьютерами, вытеснив с этой роли флоппи-диск. Начиная с середины 2000-х, он уступил эту роль более перспективным твердотельным носителям.

Формат записи на CD-ROM также предусматривает запись на один диск информации смешанного содержания — одновременно как компьютерных данных (файлы, ПО, чтение доступно только на компьютере), так и аудиозаписей (воспроизводимых на обычном проигрывателе аудио компакт-дисков), видео, текстов и картинок. Такие диски, в зависимости от порядка следования данных, называются усовершенствованными (англ. Enhanced CD) либо Mixed-Mode CD.

Зачастую термин CD-ROM ошибочно используют для обозначения самих приводов (устройств) для чтения этих дисков (правильно — CD-ROM Drive, CD-привод).

Компакт-диск представляет собой поликарбонатную подложку толщиной 1,2 мм, покрытую тончайшим слоем металла (алюминий, золото, серебро и др.) и защитным слоем лака, на котором обычно наносится графическое представление содержания диска. Принцип считывания через подложку был принят, поскольку позволяет весьма просто и эффективно осуществить защиту информационной структуры и удалить её от внешней поверхности диска. Диаметр пучка на внешней поверхности диска составляет порядка 0,7 мм, что повышает помехоустойчивость системы к пыли и царапинам. Кроме того, на внешней поверхности имеется кольцевой выступ высотой 0,2 мм, позволяющий диску, положенному на ровную поверхность, не касаться этой поверхности. В центре диска расположено отверстие диаметром 15 мм. Вес диска без коробки составляет приблизительно 15,7 г. Вес диска в обычной (не «slim») коробке приблизительно равен 74 г.

Компакт-диски имеют в диаметре 12 см и изначально вмещали до 650 Мбайт информации. Однако, начиная приблизительно с 2000 года, всё большее распространение стали получать диски объёмом 700 Мбайт, впоследствии полностью вытеснившие диск объёмом 650 Мбайт. Встречаются и носители объёмом 800 мегабайт и даже больше, однако они могут не читаться на некоторых приводах компакт-дисков. Бывают также 8-сантиметровые диски, на которые вмещается около 140 или 210 Мб данных и CD, формой напоминающие кредитные карточки (т. н. диски-визитки).

Информация на диске записывается в виде спиральной дорожки так называемых питов (углублений), выдавленных в поликарбонатной основе. Каждый пит имеет примерно 100 нм в глубину и 500 нм в ширину. Длина пита варьируется от 850 нм до 3,5 мкм. Промежутки между питами называются лендом. Шаг дорожек в спирали составляет 1,6 мкм.

Различают диски только для чтения («алюминиевые»), CD-R — для однократной записи, CD-RW — для многократной записи. Диски последних двух типов предназначены для записи на специальных пишущих приводах.

Существует несколько стандартов хранения данных на цифровых оптических дисках. В совокупности они называются «Радужными книгами». Они включают в себя «Красную книгу» — стандарт для аудиодисков, «Белую книгу» — стандарт хранения видео данных, «Жёлтую книгу» — стандарт хранения компьютерных данных, а также «Зелёную книгу» — стандарт хранения мультимедийной информации на диске, объединяющий три предыдущих стандарта

1.7. Монитор

Монитор — это устройство оперативной визуальной связи пользователя с управляющим устройством и отображением данных передаваемых с клавиатуры, мыши или центрального процессора. Принципиальное отличие от телевизора заключается в отсутствии встроенного тюнера, предназначенного для приёма высокочастотных сигналов эфирного (наземного) телевещания и декодера сигналов изображения. Кроме того, в большинстве мониторов отсутствует звуковоспроизводящий тракт и громкоговорители.

Современный монитор состоит из экрана (дисплея), блока питания, плат управления и корпуса. Информация для отображения на мониторе поступает с электронного устройства, формирующего видеосигнал (в компьютере — видеокарта или графическое ядро процессора). В качестве мониторов могут применяться также и телевизоры, большинство моделей которых уже с 1980-х годов оснащаются низкочастотными входами: сначала сигналов RGB, позже - VGA, а последнее поколение - HDMI. Все ранние домашние и некоторые профессиональные компьютеры были рассчитаны именно на использование телевизора в качестве монитора. Стандарты разложения первых видеоадаптеров (MDA, CGA) также совпадали с телевизионными.

Мониторы, предназначенные для наблюдения и (или) контроля телевизионного изображения, называются видеомониторами. Такие устройства, применяемые на разных стадиях телевизионного производства, отличаются от телевизора отсутствием тюнера. Кроме того, профессиональные видеомониторы отображают телевизионный растр полностью в режиме Underscan для возможности полноценного контроля кадрировки. К точности цветопередачи видеомониторов предъявляются повышенные требования для использования в качестве эталона. Профессиональные видеомониторы часто выполняются в корпусе, приспособленном для установки в стандартную стойку, чаще всего 19-дюймовую.

Монитор, предназначенный для вывода информации компьютера, выполняет функцию дисплея и отличается от видеомонитора стандартом разложения, не совпадающим с телевизионными. Как правило, компьютерные дисплеи, в том числе с кинескопом, обладают более высокой строчной и кадровой частотой и чёткостью, чем видеомониторы для стандартного телевидения. Это продиктовано условиями продолжительного наблюдения изображения с близкого расстояния. Кроме того, видеовходы компьютерных мониторов выполняются по компонентному, а не композитному принципу.

Персональные компьютеры обычно работают с одним монитором (серверы — вообще не требуют монитора), однако существуют видеоадаптеры, позволяющие подключить более одного монитора к одному ПК, к тому же обычно в ПК можно установить более одного видеоадаптера. Большинство современных ноутбуков помимо собственного LCD-дисплея обладают разъёмом для подключения внешнего монитора или проектора, который позволяет расширить рабочее пространство или дублировать изображение с LCD-дисплея.

Для подключения более одного монитора существуют такие разработки, как Xinerama, ATI Eyefinity.

Глава 2.Перефирийные устройства

2.1.Компьютерная мышь

Компью́терная мышь — координатное устройство для управления курсором и отдачи различных команд компьютеру. Управление курсором осуществляется путём перемещения мыши по поверхности стола или коврика для мыши. Клавиши и колёсико мыши вызывают определённые действия, например: активация указанного объекта, вызов контекстного меню, вертикальная и горизонтальная (в специализированных мышках) прокрутка веб-страниц, окон операционной системы и электронных документов.

Получила широкое распространение в связи с появлением графического интерфейса пользователя на персональных компьютерах. Помимо мышек, встречаются другие устройства ввода аналогичного назначения: трекболы, тачпады, графические планшеты, сенсорные экраны.

Мышь воспринимает своё перемещение в рабочей плоскости (обычно — на участке поверхности стола) и передаёт эту информацию компьютеру. Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения. В разных интерфейсах (например, в оконных) с помощью мыши пользователь управляет специальным курсором — указателем — манипулятором элементами интерфейса. Иногда используется ввод команд мышью без участия видимых элементов интерфейса программы: при помощи анализа движений мыши. Такой способ получил название «жесты мышью» (англ. mouse gestures).

В дополнение к датчику перемещения, мышь имеет одну и более кнопок, а также дополнительные детали управления (колёса прокрутки, потенциометры, джойстики, трекболы, клавиши и т. п.), действие которых обычно связывается с текущим положением курсора (или составляющих специфического интерфейса).

Составляющие управления мыши во многом являются воплощением замыслов аккордной клавиатуры. Мышь, изначально создаваемая в качестве дополнения к аккордной клавиатуре, фактически её заменила.

В некоторые мыши встраиваются дополнительные независимые устройства — часы, калькуляторы, телефоны.

Кнопки — основные элементы управления мыши, служащие для выполнения основных манипуляций: выбора объекта (нажатиями), активного перемещения (то есть перемещения с нажатой кнопкой, для рисования или обозначения начала и конца отрезка на экране, который может трактоваться как диагональ прямоугольника, диаметр окружности, исходная и конечная точка при перемещении объекта, выделении текста и т. п.).

Количество кнопок на мыши ограничивает концепция их использования вслепую аналогично клавишам аккордовой клавиатуры. Однако, в отличие от аккордной клавиатуры, которая может безболезненно использовать пять клавиш (по одной на каждый палец), мышь ещё необходимо перемещать тремя (большой, безымянный и мизинец) или двумя (большой и мизинец) пальцами. Таким образом, можно сделать две или три полноценные кнопки для использования параллельно с перемещением мыши по столу — под указательный, средний и безымянный пальцы (для трёх кнопок).
Крайние кнопки называют по положению — левая (под указательный палец правши), правая и средняя, для трёхкнопочной мыши.

Долгое время двух- и трёхкнопочные концепции противостояли друг другу. Двухкнопочные мыши поначалу лидировали, так как на их стороне, кроме простоты (три кнопки проще перепутать), удобства и отсутствия излишеств, было программное обеспечение, которое едва загружало две кнопки. Но, несмотря ни на что, трёхкнопочные мыши никогда не прекращали продаваться, пока противостоянию не пришёл конец.

Противостояние двух- и трёхкнопочных мышей закончилось после появления прокрутки экрана (скролла), новой популярной возможности. На двухкнопочной мыши появилась небольшая средняя (третья) кнопка для включения и выключения скроллинга, которая вскоре трансформировалась в колесо прокрутки, нажатие на которое работает как средняя кнопка.

Apple пришла к использованию дополнительных кнопок мыши своим путём. Изначально посчитав излишней даже вторую кнопку, до последнего времени Apple строила все свои интерфейсы под однокнопочную мышь. Однако современные выпускаемые фирмой Apple мыши, начиная с Mighty Mouse, могут программироваться под использование от одной до четырёх кнопок.

Производители постоянно стараются добавить на топовые модели дополнительные кнопки, чаще всего — кнопки под большой или указательный и реже — под средний палец. Некоторые кнопки служат для внутренней настройки мыши (например, для изменения чувствительности) или двойные-тройные щелчки (для программ и игр), на другие — в драйвере и/или специальной утилитой назначаются некоторые системные функции, например:

-горизонтальная прокрутка;

-двойное нажатие (double click);

- навигация в браузерах и файловых менеджерах;

-управление уровнем громкости и воспроизведением аудио- и видеоклипов;

- запуск приложений;

- и тому подобное.

Самые первые мыши (шарикового типа) не имели внутри себя ничего, кроме датчиков и кнопок, и подключались к компьютеру с помощью своего адаптера (шинные мыши англ. bus mouse) с шиной ISA, в котором и обрабатывались сигналы с датчиков.

Позднее, с развитием миниатюризации электронных компонентов, мыши стали подключаться к компьютерам x86 через последовательный коммуникационный интерфейс RS-232 (последовательные мыши) с разъёмом DB25F и, позднее, DB9F. В 1990-х годах большинство выпускавшихся мышей уже имели последовательное подключение. Последовательная мышь питалась от линии DTR («готовность компьютера») разъёма RS-232.

В компьютере PS/2 фирма IBM предусмотрела для мыши специальный порт с разъемом mini-DIN, точно таким же, как и для клавиатуры. Позднее разъёмы клавиатуры и мыши типа PS/2 были включены в современный стандарт материнских плат x86 — ATX. Такие мыши лидировали в продаже в период 2001—2007 годов и используются до сих пор, постепенно уступая свои позиции интерфейсу USB. Из-за особенностей аппаратной части IBM-совместимых компьютеров интерфейс PS/2 мышей деактивировался при загрузке, если мышь не была подключена, и при загруженном компьютере включать её в разъем было бесполезно, однако такие мыши не нагружали центральный процессор компьютера и работали более плавно в ранних вариантах компьютеров с шиной USB. Первоначально мышки PS/2 и RS-232 имели преимущество в виде возможности передавать отсчёты в компьютер с более высокой частотой — частота опроса первых USB-мышей ограничивалась частотой фреймов шины USB 1.1 (1 кГц).

Выпускается множество мышек с «беспроводным» интерфейсом. Чаще всего они построены на специализированном радиоканале, однако всё большую популярность приобретают беспроводные мышки с универсальным беспроводным радиоинтерфейсом Bluetooth.

Основная часть современных мышей имеет интерфейс USB, иногда — с адаптером для PS/2. Фирма Apple для своих компьютеров в настоящее время поставляет мыши только с интерфейсом Bluetooth, хотя возможно использование и мышей USB.

Достоинства и недостатки:

Достоинства

Мышь стала основным координатным устройством ввода из-за следующих особенностей:

- Очень низкая цена по сравнению с остальными устройствами наподобие сенсорных экранов;

- Мышь пригодна для длительной работы. В первые годы мультимедиа кинорежиссёры любили показывать компьютеры «будущего» с сенсорным интерфейсом, но на поверку такой способ ввода довольно утомителен, так как руки приходится держать на весу;

- Высокая точность позиционирования курсора. Мышью (за исключением некоторых «неудачных» моделей) легко попасть в нужный пиксель экрана;

- Мышь позволяет множество разных манипуляций — двойные и тройные щелчки, перетаскивания, жесты, нажатие одной кнопки во время перетаскивания другой и т. д. Поэтому в одной руке можно сконцентрировать большое количество органов управления — многокнопочные мыши позволяют управлять, например, браузером вообще без привлечения клавиатуры.

Недостатки

- Предполагаемая опасность синдрома запястного канала;

- Для работы требуется ровная гладкая поверхность достаточных размеров (за исключением разве что гироскопических мышей);

- Неустойчивость к вибрациям. По этой причине мышь практически не применяется в военных устройствах. Трекбол требует меньше места для работы и не требует перемещать руку, не может потеряться, имеет большую стойкость к внешним воздействиям, более надёжен.

2.2.Клавиатура

Первые компьютеры клавиатуры не имели клавиш: данные вводились в компьютер либо установкой механических переключателей и проводов, либо с помощью перфокарт (пример — ENIAC). По мере повышения производительности ЭВМ, а особенно с появлением режима разделения времени появилась необходимость вводить команды, не прерывая работу машины. Первоначально для этой цели использовались электромеханические телетайпы, позже их сменили специализированные видеотерминалы. В таком терминале клавиатура являлась его частью, даже если выполнялась в отдельном корпусе. Никаких стандартов как по электрической части, так и по составу и расположению кнопок не было. Такие терминалы могли иметь отдельные клавиши для управления курсором, прокрутки текста на экране или подачи управляющих сигналов.

С появлением мини и микрокомпьютеров клавиатура могла подключаться непосредственно к компьютеру. Однако эти клавиатуры также не были законченными универсальными устройствами: они подключались, напрямую или через согласующие устройства, к портам компьютера, на нажатие клавиш либо генерировалось прерывание, либо загруженная в компьютер программа периодически производила опрос матрицы клавиш. Компьютеры разных архитектур использовали уникальные, несовместимые друг с другом клавиатуры. У некоторых компьютеров, преимущественно одноплатных, таких как ZX80, клавиатура располагалась на корпусе, у других — соединялась многожильным кабелем с системным блоком. Некоторые клавиатуры содержали минимум клавиш — алфавитно-цифровые, Enter и несколько управляющих. Другие, как space-cadet для лисп-машин MIT, содержали большое количество управляющих клавиш, специфичных для данной архитектуры. Также стали появляться функциональные клавиши, не имевшие предопределённого назначения. Проводились эксперименты по использованию аккордных клавиатур.

Единый стандарт клавиатуры, как и многие другие стандарты компьютерного оборудования, связан с компьютером IBM PC. Первая версия клавиатуры для IBM PC, так называемая «XT-клавиатура» заметно отличалась от последующих как по раскладке, так и по протоколу обмена с компьютером: на ней было 83 клавиши (из них 10 — функциональных), отсутствовали индикаторы режимов ввода. В 1984 году вместе с компьютером IBM PC/AT появился и новый, получивший в дальнейшем широкое распространение стандарт клавиатуры — протокол обмена стал двусторонним, что позволило разместить над цифровым блоком три светодиодных индикатора режима ввода. Однако раскладка изменилась незначительно: была добавлена клавиша SysRq, цифровой блок был отделён от основного буквенно-цифрового, некоторые клавиши были перенесены на другие места. Несмотря на внешнее сходство и использование одинакового разъёма DIN, новая клавиатура была несовместима с прежними моделями компьютеров IBM PC и IBM PC/XT — для подключения к ним у некоторых клавиатур был специальный переключатель. Следующее поколение клавиатур началось с представления в 1986 году клавиатуры «Model M», имевшей в зависимости от локализации от 101 (в американской раскладке) до 106 (в японской) клавиш, и стало стандартом. Дальнейшее развитие клавиатур шло от модели «Model M»: порт подключения был заменён на PS/2 и USB, были добавлены клавиши Windows и меню, на некоторых — мультимедийные клавиши. В ноутбуках и на компактных клавиатурах расположение клавиш может отличаться; некоторые клавиши могут быть доступны с помощью модификатора Fn, но большинство компьютеров использует клавиатуру, произошедшую от компьютеров IBM PC, за исключением клавиатур от Apple и клавиатур от специализированных рабочих станций, наподобие терминалов Блумберга.

В большинстве компьютерных клавиатур контакты клавиш соединены в матрицу. Контроллер клавиатуры последовательно подаёт потенциал на ряды клавиш и по появлению сигнала на выходном шлейфе распознаёт, какая клавиша нажата. Нажатие трёх клавиш, одна из которых находится на пересечении дорожек, ведущих к двум другим клавишам, приводит к регистрации фантомного нажатия четвёртой. В недорогих клавиатурах производится оптимизация разводки с целью не допустить подобных случаев для наиболее распространённых сочетаний, а в неоднозначных случаях нажатие третьей клавиши игнорируется. Более дорогие клавиатуры могут иметь на каждой клавише диод.

Наиболее распространённый тип клавиатур — мембранные с резиновыми толкателями, служащими одновременно и для создания усилия нажатия на мембрану и возврата после отпускания клавиши. Более дорогие модели могут использовать подпружиненные металлические контакты, герконы или ёмкостные сенсоры.

За опрос матрицы клавиш, формирование скан-кодов и передачу их в компьютер по протоколу PS/2 или USB, а также за индикацию режимов ввода отвечает контроллер клавиатуры. Многие микрокомпьютеры 1970-80-х не имели отдельного контроллера клавиатуры: клавиатуру опрашивал центральный процессор. В клавиатурах стандарта IBM PC/AT опросом клавиатуры занимается микроконтроллер, аналогичный Intel 8042. Клавиатуры, подключаемые к компьютеру через порт PS/2, генерируют прерывание при нажатии, длительном удержании и отпускании клавиш. Клавиатуры, подключаемые к компьютеру через порт USB, передают состояние клавиатуры после каждого цикла опроса.

Многие современные компьютерные клавиатуры помимо стандартного набора из 104 клавиш снабжаются дополнительными клавишами (как правило, другого размера и формы), которые предназначены для управления некоторыми основными функциями компьютера:

- для управления громкостью звука: громче, тише, включить или выключить звук;

- для управления лотком в приводе для компакт-дисков: извлечь диск, принять диск;

- для управления проигрывателем: воспроизводить, поставить на паузу, остановить воспроизведение, промотать запись вперёд или назад, перейти к следующей или предыдущей записи;

- для управления сетевыми возможностями компьютера: открыть почтовую программу, открыть браузер, показать домашнюю страницу, двигаться вперёд или назад по истории посещённых страниц, открыть поисковую систему;

- для запуска часто используемых программ: открыть калькулятор, открыть файловый менеджер;

- для управления состоянием окон операционной системы: свернуть окно, закрыть окно, перейти к следующему или к предыдущему окну;

- для управления состоянием компьютера: перевести в ждущий режим, перевести в спящий режим, пробудить компьютер, выключить компьютер.

Так как многие из этих функций (управление звуком и воспроизведением звукозаписей, управление компакт-дисками и т. п.) относятся к сфере мультимедиа, то такие клавиатуры часто называются «мультимедийными клавиатурами».

Фирменные драйверы таких клавиатур, как правило, не предоставляют пользователям возможности управлять назначением большинства дополнительных клавиш (кроме, возможно, специальной группы «пользовательских клавиш»), а также не дают возможности определять дополнительные сочетания, состоящие из нескольких клавиш (с участием мультимедийных) и назначать им новые специальные функции. Однако эта проблема может быть решена при помощи независимых универсальных драйверов от сторонних разработчиков.

2.3.Принтер

Принтер (англ. printer от print «печать») — это внешнее периферийное устройство компьютера, предназначенное для вывода текстовой или графической информации, хранящейся в компьютере, на твёрдый физический носитель, обычно бумагу или полимерную плёнку, малыми тиражами (от единиц до сотен) без создания печатной формы.

Этим принтеры отличаются от полиграфического оборудования и ризографии, которое за счёт печатной формы быстрее и дешевле на крупных тиражах (сотни и более экземпляров).

Принтер — это высокотехнологичное устройство печати, созданное в первую очередь для работы с компьютером. Принтер предназначен для преобразования информации, хранящейся в вычислительном устройстве, из цифровой формы в аналоговый вид для доступного понимания этой информации пользователем и последующего долговременного её хранения.

Получили также распространение и другие устройства печати, такие, как многофункциональные устройства (МФУ), в которых в одном приборе объединены функции принтера, сканера, копировального аппарата и телефакса. Такое объединение рационально с технической и экономической стороны, а также удобно в работе.

Специализированной разновидностью принтера является плоттер.

Краситель (чернила, тонер), используемый в принтере, обычно хранится в картриджах.

Производители принтеров рекомендуют заправлять их принтеры чернилами/тонером их же производства, однако технически предотвратить использование чернил/тонера от сторонних производителей сложно (как и сделать автомобиль, работающий только на бензине от производителя автомобиля). Покупка так называемых фирменных картриджей обходится дороже, чем перезаправка картриджей чернилами или тонером от сторонних производителей.

Существует целая отрасль производителей чернил, которые поставляют их производителям принтеров по OEM-соглашениям, а также напрямую пользователям под своей торговой маркой, например, inktec, ink-mate. В современных моделях принтеров Canon используются картриджи Fine со встроенным чипом, который контролирует уровень расхода чернил. Но это не мешает перезаправке таких картриджей, даже без перепрограммирования чипа, если после перезаправки остаётся информация, что чернила закончились, принтер печатать не отказывается, лишь сообщает об низком уровне чернил.

Картриджи допускают неоднократную их заправку, при соблюдении определённых требований. При этом требуются совместимые чернила, также часто приходится прибегать к мерам по прочистке головки.

Часто под картриджем понимают совмещённую (монолитную) систему головка плюс чернильница. Однако есть и распределённая система, где в качестве картриджа выступает только сменная чернильница. Некоторыми сторонними производителями сменные чернильницы выполнялись в виде перезаправляемых картриджей (ПЗК), где предусматривалось специальное отверстие для удобной дозаправки. Материал такого ПЗК — обычно прозрачный пластик для удобного контроля уровня чернил. Идея ПЗК впоследствии трансформировалась в идею т. н. СНПЧ.

2.4.Модем

Главная функция модема — обеспечение связи между устройствами в процессе обмена данными. Если говорить простыми словами, то это устройство предназначено для кодировки, передачи, получения и преобразования сигналов. Области применения подобных приборов очень широки: они используются в гражданской и в военной связи. Среди рядовых потребителей наибольшую известность получили модемы, которые служат для обеспечения подключения к интернету. Давайте ознакомимся с принципом их работы.

Принцип работы модема

Вначале такие устройства применялись для создания компьютерных сетей с помощью использования телефонных линий. Вся обрабатываемая в компьютерах информация находится в цифровой форме, а по телефонному кабелю передаётся в виде аналогового сигнала. Поэтому понадобились устройства, способные связать ПК на разных концах линии.

Слово «модем» является производной формой от «модулятор-демодулятор». Он трансформирует сигнал перед передачей данных в форму, соответствующую требованиям используемого канала связи (производит модуляцию сигнала), а принимаемый сигнал изменяет в форму, подходящую для обрабатывания компьютером пользователя (производит демодуляцию сигнала).

Модем служит для трансформации сигнала в форму, подходящую для обработки компьютером

История появления устройства

Цифровые модемы возникли из-за необходимости в передаче данных между звеньями противовоздушной обороны Северной Америки. Массовое производство модемов в Соединённых Штатах началось в 1958 году в первую очередь для системы противовоздушной обороны Sage (впервые был использован термин «модем»). Устройства использовались в сетях, соединяющих терминалы на различных авиабазах, радарных объектах и ​​командно-контрольных центрах, разбросанных по США и Канаде.

Первый представитель устройств Bell Dataphone 103 выпущен в 1958 году, его скорость передачи данных была 300 бит/с. Телефонной компанией AT&T было введено дейтафонное обслуживание (компания обеспечивала передачу информации по телефонным каналам). Выпущенный позже модем Bell 212a позволил наладить передачу данных со скоростью 1200 бит/с, но он отличался повышенной чувствительностью к шумам телефонных линий. Более устойчивым к шумам оказался модем, разработанный компанией Racal-Vadic. С этого момента началась конкурентная борьба за стандарты и права в этой отрасли.

Модем служит для трансформации аналогового сигнала в цифровой

Широкое распространение модемы получили, начиная с 1977 года, когда Деннис Хейс и Дейл Хезертингтон выпустили модель 80–103A. К середине 2000 годов модемы стали частью компьютера, помогли ему превратиться в многофункциональное устройство, которое предоставляет пользователю возможность для получения информации со всего мира. Модемы сделали отдельные компьютеры звеньями глобальной сети.

Наибольшей популярностью пользуются модемы с Wi-Fi. В них предусмотрено подключение устройств как проводным, так и беспроводным способом. Такой модем может работать как мост или роутер. У него предусмотрена раздача интернета по Wi-Fi сети. Именно такие многофункциональные устройства стоит выбирать для использования. Главный критерий оценки при их выборе — это необходимая вам мощность. От неё зависит цена модема и зона действия сигнала Wi-Fi. Соответственно, для небольших помещений хватит более дешёвого варианта, в случае требований к покрытию значительной площади необходимо выбирать большую мощность.

Из всего разнообразия существующих типов и видов наиболее интересны для рядовых пользователей модемы, обеспечивающие беспроводной выход в интернет из любой точки в зоне покрытия сигналом. Так как возможности сотовых операторов растут, подобный способ подключения к сети набирает популярность. В скором времени скорость беспроводного интернета сравняется с возможностями, которые предоставляют высокоскоростные кабельные соединения.

2.5.USB адаптеры

Первые модели были рассчитаны на USB 1.1 с его максимальной пропускной способностью в 12 Мбит/с, так что требовать от них чего-либо выходящего за рамки сети-«десятки» смысла не имело. Впрочем, следующее поколение устройств уже получило поддержку Fast Ethernet, но это требовалось лишь для совместимости с прочим кабельным хозяйством — чтоб «не завалить» на 10 Мбит/с все устройства, подключенные к какому-нибудь простенькому хабу. Внедрение же спецификаций USB 2.0 с пропускной способностью до 480 Мбит/с позволило полноценно задействовать «сотку» и начать прощупывать Gigabit Ethernet (пусть и не на полной скорости, но все равно это было существенно быстрее, чем позволял предыдущий стандарт), а переход на USB 3.0 полностью закрыл вопрос с самой быстрой из массовых версий проводной сети. При наличии спроса можно будет повышать скорость и далее — просто пока это не слишком нужно.

Да и сами по себе подобные адаптеры никогда не были предметом массового спроса — настолько, что многие пользователи компьютеров об их существовании просто не знают (собственно, это одна из основных причин, по которой мы решили посмотреть на современное состояние дел в этом сегменте). Сначала поддержка сетей вообще считалась опциональной, но для самых массовых на тот момент компьютеров (то есть настольных) легко решалась при помощи плат расширения (чаще всего — чуть более быстрых, чем встроенные решения, да и лучше совместимых с операционными системами тех лет). Позднее проводная сеть стала обязательной — но точно так же обязательной стала и ее изначальная поддержка любым компьютером (неважно, настольным или мобильным), то есть наличие в нем соответствующего адаптера. На текущий момент некоторые виды компьютерной техники снова начали обходиться без поддержки проводных сетей — но в основном потому, что их пользователей более чем удовлетворяют колоссально развившиеся с тех пор беспроводные сети. Более того, и владельцы компьютеров «классических» форм-факторов даже при наличии встроенного адаптера проводного Ethernet зачастую им не пользуются никогда или почти никогда. Если же говорить об устройствах «нового образца», типа ультрабуков или планшетов, изначально рассчитанных на отсутствие привязки к конкретному месту использования, то там это тем более выполняется.

С другой стороны, иногда все-таки требуется обеспечить поддержку проводных сетей там, где ее изначально не предусмотрено. Самый простой сценарий — если предусмотрен один сетевой интерфейс, но понадобилось два, а слотов расширения в системе нет (либо они недоступны) — например, когда речь идет о мини-ПК типа Intel NUC и его аналогов. Второй случай — если регулярно возникает необходимость обмениваться большими объемами информации с, например, ультрабуками: даже лучшие версии беспроводных стандартов все еще медленнее, к тому же для их реализации может потребоваться модернизация всей инфраструктуры (тогда как Gigabit Ethernet в домашний сегмент начал продвигаться еще во времена господства в лучшем случае 802.11n с пропускной способностью 150/300 Мбит/с). Возможно также, что использование провода требуется из соображений безопасности, а не скорости. Либо просто в нужном месте нет Wi-Fi, но с незапамятных времен водится сетевая розетка. Либо вообще речь идет о прямом подключении к какому-либо оборудованию, что часто встречается в практике инженера-эксплуатационщика — а носиться по объектам с маленьким планшетом куда удобнее, чем с большим ноутбуком (в маленьких же ноутбуках сейчас встроенная поддержка Ethernet зачастую тоже отсутствует).

По всем этим причинам адаптеры USB—Ethernet не только не вымерли, но и модернизировались, стали даже более универсальными и удобными. В частности, таков наш сегодняшний герой производства компании Deppa Подобные продукты есть у многих производителей, причем иногда они стоят существенно дешевле. Но для общего качественного анализа состояния дел он нам вполне подойдет, благо использует популярную элементную базу — в виде контроллера Realtek RTL8153. Появился этот чип в июле 2013 года, однако улучшать его пока необходимости просто нет: сети с большей пропускной способностью на массовое распространение все еще не претендуют. Собственно, по состоянию на конец 2016 года даже в сегменте HPC-кластеров 60% строящихся систем для связи узлов продолжали использовать именно Gigabit Ethernet (чего уж говорить о сетях масштаба «обычных» предприятий), а ведь 1000Base-T (то есть 1 Гбит/с по витой паре пятой категории) в виде спецификаций «устаканился» еще в конце прошлого века.

USB 3.0 (или, как его рекомендовано называть сейчас, «USB 3.1 Gen1») тоже устоялся давно, для полной реализации скоростных возможностей гигабитной сети подходит, имеется в подавляющем большинстве компьютеров и не только компьютеров. Стоит также отметить, что компания Realtek в свое время предусмотрела возможность питания RTL8153 не только от 5 В (стандартное значение для USB), но и от 3,3 В, причем без необходимости в дополнительных схемах — последнее может пригодиться, например, для разработки Ethernet-адаптера под iPhone/iPad :) Впрочем, подавляющее большинство сетевых адаптеров на этом чипе рассчитаны на подключение к USB-порту и все еще на «обычный» разъем А-типа. Адаптер же Deppa нам приглянулся как раз тем, что уже использует разъем Type-C, что облегчает его подключение не только лишь к стационарным компьютерам.

На мобильное использование прямо намекает и дизайн устройства: основная часть размерами с зажигалку (63×23×14 мм) соединяется с USB-разъемом кабелем длиной всего 12 см, а весит вся эта конструкция всего 23 грамма. Для стационарного использования этот адаптер, конечно, тоже подойдет, но в первую очередь производитель упирает на совместимость с MacBook и другими ноутбуками.

2.6.ИБП

Исто́чник (система, агрегат) бесперебо́йного электропита́ния (ИБП), UPS (англ. Uninterruptible Power Supply (Source, Systems)) — источник электропитания, обеспечивающий при кратковременном отключении основного источника мощности питания, а также защиту от помех в сети основного источника. ИБП является вторичным источником электропитания. Преобразованию может подвергаться как качество электрической энергии, так и параметры электрической энергии (напряжение, частота).

Источники бесперебойного электропитания развивались параллельно с компьютерами и другими высокотехнологическими устройствами для надежного питания этого оборудования, чего стандартные сети электроснабжения обеспечить не могут. Наиболее широко распространены конструкции в качестве отдельного устройства, включающего в себя аккумулятор и преобразователь постоянного тока в переменный. Также в качестве резервного источника могут применяться маховики и топливные элементы. В настоящее время мощность ИБП находится в диапазоне 100 Вт … 1000 кВт (и более), возможны различные величины выходных напряжений.

Кратковременные нарушения нормальной работы электрической сети являются неизбежными. Причиной большинства кратковременных нарушений электроснабжения являются короткие замыкания. Полностью защитить электрическую сеть от них практически невозможно или, во всяком случае, это стоило бы очень дорого. Кратковременные перерывы питания случаются значительно чаще, чем длительные. Длительного перерыва питания возможно избежать, используя автоматический ввод резерва (АВР). При этом кратковременные перерывы питания будут не только при коротком замыкании на любой из питающих АВР линий, но и на линиях, питающих соседних потребителей.

Бесперебойное от гарантированного электропитания отличается тем, что в случае гарантированного электропитания допускается перерыв на время ввода в действие резервного источника. В случае бесперебойного электропитания требуется «мгновенный» ввод в действие резервного источника. Это важное требование ограничивает круг пригодных к применению в источниках бесперебойного питания резервных источников. На практике обычно может быть применен только один такой источник — аккумуляторная батарея.

Основной функцией ИБП является обеспечение непрерывности электропитания посредством использования альтернативного источника энергии. Кроме того, ИБП повышает качество электропитания, стабилизируя его параметры в установленных пределах. В ИБП в качестве накопителя энергии обычно используются химические источники тока. Кроме них, могут применяться и иные накопители. В качестве первичного источника может использоваться электропитание, поступающее от электросети или генератора.

Сложное технологическое оборудование современного промышленного производства не может нормально функционировать, если электроснабжение не бесперебойное. Для многих промышленных предприятий перерыв питания на несколько секунд или даже на десятые доли секунды ведет к нарушению непрерывного технологического процесса и к остановке производства.

Если допустимое время перерыва питания меньше 0,2 с, возможно только использование источников бесперебойного питания, защита автоматическими выключателями цепи с коротким замыканием для уменьшения времени перерыва питания в таком случае невозможна или неэффективна. Если допустимое время более 0,2 с, возможно использование защит электросети или использование источников бесперебойного питания. При допустимом времени 5…20 с возможно отказаться от источников бесперебойного питания и использовать АВР.

Для электродвигателей провалы напряжения в сети 0,4 кВ длительностью 0,3…0,5 с могут привести к тому, что векторы остаточной ЭДС электродвигателей могут оказаться в противофазе с векторами напряжения сети. В результате при восстановлении питания произойдет срабатывание электромагнитных расцепителей автоматических выключателей и окончательное отключение электродвигателей. При этом провалы напряжения длительностью менее 0,3 с не представляют опасности, поэтому для электродвигателей борьба с провалами напряжения обычно направлена на предотвращение отключения контакторов в цепи главного питания 0,4 кВ. Одной из таких мер является питание цепей управления контактора от источника бесперебойного питания.

Восприимчивость промышленных контроллеров на логических микросхемах к провалам напряжения аналогична восприимчивости компьютеров.

Нарушение работы контакторов и реле может произойти при прерывании напряжения 5…10 мс и 80…120 мс. Разница в работе одного и того же устройства возникает из-за разницы в мгновенной величине напряжения переменного тока, когда начался провал напряжения. При прохождении напряжения через ноль устойчивость более чем в 10 раз больше.

Для резервированного питания промышленных и военных объектов нередко используются ДДИБП. В частности, они работают на космодроме Байконур.

Заключение

Развитие электронной промышленности осуществляется такими быстрыми темпами, что буквально через один год, сегодняшнее "чудо техники" становится морально устаревшим. Однако принципы устройства компьютера остаются неизменными еще с того момента, как знаменитый математик Джон фон Нейман в 1945 году подготовил доклад об устройстве и функционировании универсальных вычислительных устройств.

К тому же, каждый пользователь, эксплуатирующий персональ­ный компьютер, знает круг задач для решения, которых он исполь­зует компьютер, следовательно, и 10 лет назад приобретенная "286-я машина" исправно работающая, удовлетворяющая запросы то­го или иного специалиста является незаменимым его помощником в повседневном труде.

Поэтому рассмотренная выше тема дает наглядное представ­ление о том, какое ведущее место в жизни общества занимают в настоящее время персональные компьютеры, сфера применения ко­торых безгранична.

Список литературы и источников

1процессор- https://centr-bibliotek.ru/stati/processor-v-kompyutere-chto-eto-takoe.html

2-материнская плата- https://spravochnick.ru/informatika/arhitektura_personalnogo_kompyutera/materinskaya_plata/

3-память пк- https://www.computerra.ru/

4- http://it-uroki.ru/uroki/vnutrennee-ustrojstvo-kompyutera.html

5- Компьютер своими руками" (С. В. Глушаков и др.)

6- Компьютер. Большой самоучитель по ремонту, сборке и модернизации

Колисниченко Денис Николаевич

Асмаков С.В., Пахомов С.О. Железо 2010. КомпьютерПресс рекомендует. 2010 год. 416 стр.

Патрик Гёлль. Как превратить персональный компьютер в измерительный комплекс. 2001 год. 144 стр.

С.В. Глушаков, А.С. Сурядный, Т.С Хачиров. Персональный компьютер. 6-изд. 2010 год. 482 стр.