Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Автоматизация управления автодорог

Содержание:

Введение

Автомобильные пассажирские и грузовые перевозки, очень стремительно развиваются. Количество автотранспортных средств, постоянно и динамично растет. Интенсивность транспортных потоков, метеорологические условия, приводят к изменению режимов движения. Как следствие образуются заторы. В определенное время года и суток, повышается аварийность. Гибкая система управления движением, необходима для обеспечения удобного и безопасного движения. Автоматизация управления автодорог это возможность прогнозировать и задавать оптимальные режимы. Благодаря этому повышается экономическая эффективность перевозок, безопасность, скорость и пропускная способность. В настоящее время для эффективного управления автомобильными дорогами успешно внедряются элементы различных автоматизированных систем управления, построенных на основе компьютеризованных интеллектуальных автоматических систем. Основные преимущества интеллектуальных транспортных систем – повышение пропускной способности, снижение уровня аварийности и токсичных выбросов, повышения качества функционирования сети реализуется за счет предоставления каждому участнику движения информации об оптимальных маршрутах.

Основные функции автоматизированного управления дорожным движением.

Автоматизированные системы управления дорожным движением — это взаимосвязанный комплекс технических, программных и организационных мер, собирающих и обрабатывающих информацию о данных транспортных потоков и на основе этого оптимизирующих управление движением.

Задачей автоматизированных систем управления дорожным движением является обеспечение организации безопасности дорожного движения на дорогах.

Автоматизация управления автодорог выполняет управляющие и информационные функции, основными из которых являются:

Мониторинг и управление транспортными потоками.

Система обеспечения информацией;

Автоматическое определение мест дорожно-транспортных происшествий;

Далее более детально и подробно рассмотрим функции автоматизированной системы управления дорожного движения.

Мониторинг и управление транспортными потоками.

Управление дорожным движением невозможно без организации мониторинга дорожнотранспортной обстановки. Система мониторинга это сбор, обработка, хранение и передача данных о параметрах транспортных потоков. Для автоматизации управления транспортным потоком необходимо владеть информацией о реальном состоянии дорожного движения и его параметрах. Поэтому требуется измерение следующих характеристик:

  • Общее количество транспортных средств, прошедших по каждой полосе за заданный период времени;
  • Средняя скорость движения транспортного потока;
  1. Среднее значение загруженности дороги, в зонах контроля, за определенный период времени.

Мониторинг транспортных потоков в системе автоматизации управления автодорог позволяет решать и другие задачи. Такие как обрабатывать оперативные и архивные данные о параметрах транспортных потоков, формировать на их основе отчёты и готовить решения по изменению сценариев управления.

А так же определять возникновение внештатных ситуаций и осуществлять информирование о них.

Все эти сведения выдают детекторы транспорта и их используют для реализации гибкого регулирования, а также для расчета или автоматического выбора программ управления дорожным движением. Способностью осуществлять мониторинг транспортных потоков обладают, как радиолокационные детекторы транспорта, так и видеодетекторы, в том числе, комплексы фото-, видео-фиксации и системы видеоконтроля.

Автоматизация управления автодорог с помощью детекторов транспорта позволяет осуществлять адаптивное управление светофорами, определять скорость и тип транспортных средств, а также их количество.

Автоматизированное управления светофорами

Автоматизация управления автодорог подразумевает управление светофорами в автоматическом режиме. Автоматическое управление светофорами повышают пропускную способность перекрестков. Дорожное движение регулируется с помощью динамического управления сигналами светофора под управлением интеллектуальных дорожных контролеров. Удаленные датчики движения, камеры, контроллеры, в режиме реального времени оценивают загруженность транспортного потока и передают всю информацию на центральный сервер управления автоматического управления движением. Контроллеры обеспечивают связь светофора с диспетчерским центром через Ethernet и/или GPRS, оборудованы модулем сбора дорожной информации.

Далее на основе показаний датчиков центральный сервер загружает в интеллектуальный дорожный контроллер планы координации в соответствии с различными критериями:

  • временем года;
  • днем недели;
  • временем суток;
  • текущей дорожно-транспортной ситуацией.

На основании полученной информации контроллеры управляют работой светофоров. Включается красный/зеленый свет так, чтобы максимально сократить время пребывания автомобилей на перекрестках. Допустим, на одном из направлений наблюдается высокая загруженность, то ему продлевается зеленый свет.

Автоматизированная система способна предсказать транспортную ситуацию на 15-30 минут вперед. Благодаря этому есть возможность заранее выработать эффективный план управления светофорами. В зависимости от типов датчиков, система может учитывать приоритет общественного транспорта, экстренных служб и «спецсопровождения» перед остальными участниками движения.

Автоматизация управления автодорог: определение мест ДТП

Автоматическое управление светофорами, контролируют не только плотность движения, но и учитывают погодные условия и ДТП. Данные о погодных условиях, ДТП, а также о работе спецтехнике считываются интеллектуальными транспортными контроллерами. Автоматика самостоятельно определяет режим работы светофоров и пропускает максимальное количество машин.

Быстрое реагирование в случае возникновения ДТП может начать процесс принятия необходимых мероприятий. Во-первых, выработать стратегию управления транспортным потоком. Во-вторых, информирование водителей перед началом движения и/или в процессе движения. В-третьих, обеспечивают существенно быструю реакцию служб спасения.

Использование результатов анализа данных с мест возникновения дорожно-транспортных происшествий является очень важной областью в движении транспортных потоков.

Сообщения о ДТП автоматически передаются в спасательные и аварийные службы. Также если систему дополнить модулем считывания номерных знаков машин, в этом случае данные получаемые системой, могут использоваться для привлечения нарушителей к ответственности

Обеспечение информацией и навигацией

Системы для информирования водителей с помощью бортовых блоков или управляемых дорожных знаков и дисплеев, которые расположены вдоль дорог, имеют постоянно возрастающее значение для управления транспортными потоками. Информация о возможных проблемах значительно уменьшает заторы, благодаря тому, что водитель может выбрать другие варианты пути движения или подходящую стоянку или парковку. Система информации о парковках с помощью электронных табло информирует водителей о наличии свободных мест на определённых стоянках.

Для повышения уровня безопасности на трассах посредством информирования водителей об условиях и режимах движения, устанавливают дистанционно управляемые знаки с информационным табло. Водители в режиме реального времени могут видеть температуру воздуха, данные о состоянии дорожной поверхности. Кроме информационных табло, вдоль дорог устанавливаются электронные дорожные знаки. Полноцветные электронные дорожные знаки, рекомендуют водителям оптимальный скоростной режим в зависимости от погодных условий и состояния проезжей части, и в случае необходимости рекомендуют ограничить скоростной режим.

Автоматизация освещения автодорог.

Количество визуальной информации, которая воспринимается водителем на дороге, напрямую влияет на принятие им адекватных решений при изменении дорожно-транспортной ситуации. Организация достаточного, но не доставляющего зрительного дискомфорта освещения проезжей части, пешеходных переходов и тротуаров позволяет существенно повысить безопасность всех участников дорожного движения и сократить число ДТП.

Очевидно, что проектирование освещения является важной частью работ по созданию проекта автомобильной дороги. Автоматизированное управление наружным освещением на автодорогах должно обеспечивать:

  • Автоматическое включение освещения (формирование расписаний, астрономическое и произвольное). Оптимизация энергопотребления, т.е реализация нескольких режимов освещения. В часы наиболее интенсивного движения, включается освещение повышенной яркости и наоборот снижение яркости в часы минимального движения.
  • Диспетчерское(оперативное) управление системой освещения. Сюда входит, в – первых управление временем включения освещения и возможность дистанционного изменения астрономического расписания с целью экономии электроэнергии. Во вторых должен быть обеспечен контроль за состоянием системы освещения, в том числе и контроль при возникновении нештатных ситуаций.

Все решения по автоматизации автодорог постоянно развиваются.

Например, в Голландии в качестве эксперимента создали участок дороги длинной около 500 метров, который, по словам разработчиков, стал прототипом автострады нового поколения. Особенностью автострады стали светодиодные лампы, которые заражаются с помощью миниатюрных солнечных батарей, установленных прямо на дороге, и специальных «ветряков». Такой способ организации освещения избавляет дорожные службы от необходимости тянуть электрические кабели до опор. При этом лампы загораются только в момент приближения автомобилей, а в остальное время – горят с минимальной мощностью. Помимо светодиодных ламп на дороге используется специальная разметка, которая выполнена с помощью флуоресцентной краски. Это позволяет ей «заряжаться» от дневного света и светиться на протяжении всей ночи. На обочинах разработчики нарисовали специальные снежинки, которые начинают светиться при низкой температуре, что позволяет проинформировать водителей о гололеде.

Кроме всего выше сказанного, очень важно, чтобы автоматизированная система управления автодорог не стояла на месте. Развивалась и поддерживала современные тенденции в области проектирования с перспективами на будущее. Долгосрочная перспектива развития дорожно-транспортной отрасли, безусловно, должна быть инновационной, и опираться на передовые достижения науки и техники.

оборудованием. Быстрое развитие методов и средств автоматизированного управления дорожным движением обусловлено интенсивным ростом городских перевозок. В нашей стране данная тенденция особенно проявила себя в последние четыре десятилетия. Это связано прежде всего с тем, что разработка и производство средств автоматизированного управления дорожным движением (АСУД) были поставлены на промышленную основу. В 60-х годах было начато широкое оснащение городов техническими средствами и АСУД. Создание и внедрение АСУД осуществляется в соответствии с государственными программами по науке и технике. За 30 лет объём выпуска данных средств возрос более чем в 30 раз. В настоящее время в большинстве средних и крупных городов функционируют АСУД. Большое внимание уделяется унификации технических и программных средств.

Внедрение АСУД, как правило, обеспечивает быструю экономическую отдачу и положительно влияет на безопасность движения. Эффект от внедрения этих средств за счёт сокращения задержек транспорта и уменьшения количества расходуемого на передвижение бензина составляет в среднем 30 %.

Количество дорожно-транспортных происшествий (ДТП) на перекрёстках, оснащённых современными средствами управления, на 10 – 15 % ниже, чем на нерегулируемых.

Постоянное усложнение дорожно-транспортных условий требует непрерывного совершенствования методов и средств управления движением. Если проанализировать динамику развития АСУД, то можно выделить четыре основных этапа.

На первом этапе разрабатывались локальные средства регулирования движения, заменяющие постовых милиционеров для изолированных перекрёстков. Были созданы установки для жёсткого регулирования движения, гибкого управления в зависимости от параметров транспортных потоков, устройства вызывного действия, обеспечивающие безопасный переход пешеходов через улицу. Все эти приспособления существенно повысили надёжность регулирования движения, позволили уменьшить количество инспекторов ГИБДД, регулировщиков движения транспорта. В определённой мере они обеспечили и повышение эффективности функционирования транспортных потоков. Например, применение установок гибкого регулирования снижает задержки транспорта по сравнению с жёстким на 10 – 20 %.

На втором этапе были созданы методы и средства жёсткого координированного управления транспортными потоками на отдельных магистралях или на небольших участках дорожных сетей. Были

8

разработаны телемеханические системы координированного управления. Данные системы, обеспечивая работу светофорной сигнализации в режиме «зелёная волна», позволили основной массе транспорта проходить несколько перекрёстков подряд без остановок. При внедрении подобных систем резко возрастает средняя скорость движения транспорта, уменьшается количество задержек перед перекрёстками. Движение транспорта становится более упорядоченным, выравниваются в определённой степени скорости автомобилей, что способствует повышению безопасности движения.

Третий этап характерен созданием крупных АСУД, осуществляющих адаптивное управление транспортными потоками на больших городских территориях. Данные системы, обладая развитым информационноизмерительным и управляющим вычислительным комплексом, осуществляют непрерывный контроль параметров транспорта и автоматическую оптимизацию управления транспортными потоками на всей территории. Важным преимуществом АСУД является высокая адаптируемость к условиям дорожного движения на основе накопления и автоматической обработки данных по транспортным потокам. Существенной является и возможность автоматического безостановочного пропуска по дорожной сети специальных автомобилей. Отмеченные преимущества, а также автоматический контроль работы светофорных объектов обеспечили широкое распространение данных систем в крупных городах.

На четвёртом этапе были созданы АСУД на базе персональных электронно-вычислительных машин (ПЭВМ) и микропроцессорной техники. Эти системы в несколько раз расширили перечень функций и решаемых задач, а также сократили затраты на их обслуживание за счёт большей интеграции. В настоящее время в нашей стране АСУД на базе ПЭВМ функционируют в 30 городах.

Широкое внедрение средств и систем автоматизированного управления дорожным движением осуществляется и в зарубежных странах. Ведущие фирмы по этому направлению – «Мацусита» (Япония), «Сименс» (ФРГ), «Плесси» (Англия), «ТРТ» (Франция), «ПИК ТРЭФФИК» (США) – обеспечивают разработку и внедрение АСУД. Следует подчеркнуть, что при общности основных концепций построения и развития данных средств и систем отечественные разработки различаются тактико-техническими данными, конструктивным исполнением и схемной реализацией.

Постоянное совершенствование методов и средств автоматизации управления дорожным движением требует развития служб эксплуатации. В состав службы АСУД с применением ПЭВМ должны входить специалисты со средним техническим и высшим образованием. Их подготовка должна иметь многосторонний комплексный характер.

Обслуживание систем требует знаний в области измерительной техники, логических устройств, систем кодирования и передачи информации компьютеров. В то же время специалисты должны владеть элементами организации движения, знать свойства транспортных потоков, быть знакомыми с основами строительного и монтажного дела.

Современная АСУД – это комплекс строительных сооружений, кабельных проводок, сложнейших электронных и логических схем и сети компьютеров.

В данной книге делается попытка обобщить и систематизировать материал и опыт разработки и создания АСУД на базе ПЭВМ и микропроцессорной техники.

Изложенный в книге материал рассчитан на студентов специальностей «Организация и безопасность дорожного движения» и специалистов в области проектирования и эксплуатации АСУД.

Основные принципы управления

В процессе проектирования систем управления дорожным движением необходимо решать задачи, связанные с анализом процессов функционирования объекта управления, а также синтезом алгоритмов управления и обработки информации. На первом этапе требуется определить основные параметры объекта управления. Отметим, что объектом управления является транспортный поток (ТП).

Дорожные контроллеры (ДК) для локального управления дорожным движением.Эти устройства осуществляют переключение светофорной сигнализации только с учётом местных условий движения, существующих на управляемом перекрёстке. Обмен информацией с устройствами управляющих пунктов в данных контроллерах не предусмотрен.

Устройства данного класса подразделяются на следующие типы: ДК с вызывными устройствами, осуществляющие переключение

светофорных сигналов по вызову пешеходами. Предназначены для управления дорожным движением на пешеходных переходах транспортных магистралей или перекрёстках с малой интенсивностью движения транспорта по направлению, пересекающему магистрали. К этим устройствам относятся контроллеры ДКС с ТВП;

ДК с фиксированными длительностями фаз, осуществляющие переключение светофорных сигналов по одной или нескольким заранее заданным временным программам и предназначенные для управления дорожным движением на пересечениях улиц с мало изменяющейся в течение дня интенсивностью движения транспортных средств. К устройствам данного типа относятся модификации контроллеров ДКС, ДКП и др.;

ДК с переменной длительностью фаз, осуществляющие переключение светофорных сигналов в зависимости от параметров транспортного потока и предназначенные для управления дорожным движением на пересечениях улиц, на которых интенсивность движения транспорта часто изменяется в течение суток. К устройствам данного типа относятся контроллеры ДКМ4-4.

.Дорожные контроллеры для АСУД.Эта группа контроллеров осуществляет переключение светофорных сигналов в зависимости от управляющих воздействий УП и включает следующие типы:

программные контроллеры, осуществляющие переключение светофорной сигнализации по одной из нескольких заранее заданных временных программ. Все дорожные контроллеры подключены к магистральному каналу связи, а инициатором начального момента включения программы являются устройства управляющего пункта, таймер или непосредственно один из контроллеров. К устройствам данного типа относятся модификации ДКС;

контроллеры непосредственного подчинения, осуществляющие переключение светофорной сигнализации по командам из управляющего пункта. Каждый из контроллеров связан с управляющим пунктом отдельной телефонной линией, по которой получает управляющие воздействия и сигнализирует о режиме функционирования и состоянии светофорного объекта. В ряде контроллеров заложена возможность коррекции управляющих воздействий в зависимости от реальной ситуации, сложившейся в данный момент времени на перекрёстке. К контроллерам непосредственного подчинения относятся модификации ДКС, ДКП, КДУ и др.

Анализ функционирования транспортной системы при внедрении АСУ ДД по проектам Института этих и других городах показывает следующую эффективность организации дорожного движения:

сокращение на 30-50% транспортных задержек у перекрестков, за счет оптимизации режимов работы светофорной сигнализации;

повышение на 10-15% средней скорости движения ТС на перегонах между перекрестками за счет уменьшения длины очередей, ожидающих разрешающего сигнала светофора;

cокращение на 10-20% времени проезда по УДС;

увеличение на 15-25% транспортной работы;

улучшение на 20-25% санитарного состояния воздушного бассейна города вследствие уменьшения его загрязнения отработавшими газами двигателей (за счет сокращения остановок ТС, повышения средней скорости движения).

Средства создаваемой системы АСУ ДД обеспечивают:

поэтапное наращивание технологических функций системы управления и количества регулируемых перекрестков, охватываемых системой;

автоматический контроль за функционированием системы и состоянием ее технически средств;

исключение возможности возникновения конфликтных ситуаций на перекрестках;

удобство обслуживания и эксплуатации технических средств регулирования за счет наличия в составе системы сервисных средств и статистической информации о работе оборудования.

На базе средств АСУД в городах возможно также создание следующих систем:

система экологического контроля;

противоугонной системы контроля автомобильного транспорта;

телевизионных систем контроля за дорожным движением.

Система экологического контроля, которая может быть создана путем дополнения АСУД специальными датчиками и позволит решать следующие задачи:

автоматический сбор, обработку, передачу в центр информации об уровне загазованности воз духа в жилых массивах, на городских магистралях и в промышленных зонах;

своевременное предупреждение об аварийных выбросах; анализ информации о состоянии городского воздушного бассейна и отображение ее на мониторе ПЭВМ;

оперативное принятие решений, выдачу рекомендаций и принятие мер по снижению уровня загазованности.

Ориентировочная стоимость разработки ПСД на создание и развитие АСУ ДД составляет 300-700 тыс. руб. для десяти светофорных объектов. В зависимости от их категории сложности сроки проектирования АСУ ДД составляют 3-8 месяцев в зависимости от задач и размера объекта систем проектируемой системы в один или несколько этапов.

Быстрое развитие методов и средств автоматизированного управления дорожным движением обусловлено интенсивным ростом городских перевозок. В нашей стране данная тенденция особенно проявила себя в последние четыре десятилетия. Это связано прежде всего с тем, что разработка и производство средств автоматизированного управления дорожным движением (АСУД) были поставлены на промышленную основу. В 60-х годах было начато широкое оснащение городов техническими средствами и АСУД. Создание и внедрение АСУД осуществляется в соответствии с государственными программами по науке и технике. За 30 лет объём выпуска данных средств возрос более чем в 30 раз. В настоящее время в большинстве средних и крупных городов функционируют АСУД. Большое внимание уделяется унификации технических и программных средств.

Внедрение АСУД, как правило, обеспечивает быструю экономическую отдачу и положительно влияет на безопасность движения. Эффект от внедрения этих средств за счёт сокращения задержек транспорта и уменьшения количества расходуемого на передвижение бензина составляет в среднем 30 %.

Количество дорожно-транспортных происшествий (ДТП) на перекрёстках, оснащённых современными средствами управления, на 10 –15 % ниже, чем на нерегулируемых.

Постоянное усложнение дорожно-транспортных условий требует непрерывного совершенствования методов и средств управления движением. Если проанализировать динамику развития АСУД, то можно выделить четыре основных этапа.

На первом этапе разрабатывались локальные средства регулирования движения, заменяющие постовых милиционеров для изолированных перекрёстков. Были созданы установки для жёсткого регулирования движения, гибкого управления в зависимости от параметров транспортных потоков, устройства вызывного действия, обеспечивающие безопасный переход пешеходов через улицу. Все эти приспособления существенно повысили надёжность регулирования движения, позволили уменьшить количество инспекторов ГИБДД, регулировщиков движения транспорта. В определённой мере они обеспечили и повышение эффективности функционирования транспортных потоков. Например, применение установок гибкого регулирования снижает задержки транспорта по сравнению с жёстким на 10 – 20 %.

На втором этапе были созданы методы и средства жёсткого координированного управления транспортными потоками на отдельных магистралях или на небольших участках дорожных сетей. Были разработаны телемеханические системы координированного управления. Данные системы, обеспечивая работу светофорной сигнализации в режиме «зелёная волна», позволили основной массе транспорта проходить несколько перекрёстков подряд без остановок. При внедрении подобных систем резко возрастает средняя скорость движения транспорта, уменьшается количество задержек перед перекрёстками. Движение транспорта становится более упорядоченным, выравниваются в определённой степени скорости автомобилей, что способствует повышению безопасности движения.

Третий этап характерен созданием крупных АСУД, осуществляющих адаптивное управление транспортными потоками на больших городских территориях. Данные системы, обладая развитым информационно-измерительным и управляющим вычислительным комплексом, осуществляют непрерывный контроль параметров транспорта и автоматическую оптимизацию управления транспортными потоками на всей территории. Важным преимуществом АСУД является высокая адаптируемость к условиям дорожного движения на основе накопления и автоматической обработки данных по транспортным потокам. Существенной является и возможность автоматического безостановочного пропуска по дорожной сети специальных автомобилей. Отмеченные преимущества, а также автоматический контроль работы светофорных объектов обеспечили широкое распространение данных систем в крупных городах.

На четвёртом этапе были созданы АСУД на базе персональных электронно-вычислительных машин (ПЭВМ) и микропроцессорной техники. Эти системы в несколько раз расширили перечень функций и решаемых задач, а также сократили затраты на их обслуживание за счёт большей интеграции. В настоящее время в нашей стране АСУД на базе ПЭВМ функционируют в 30 городах.

Широкое внедрение средств и систем автоматизированного управления дорожным движением осуществляется и в зарубежных странах. Ведущие фирмы по этому направлению – «Мацусита» (Япония), «Сименс» (ФРГ), «Плесси» (Англия), «ТРТ» (Франция), «ПИК ТРЭФФИК» (США) – обеспечивают разработку и внедрение АСУД. Следует подчеркнуть, что при общности основных концепций построения и развития данных средств и систем отечественные разработки различаются тактико-техническими данными, конструктивным исполнением и схемной реализацией.

Постоянное совершенствование методов и средств автоматизации управления дорожным движением требует развития служб эксплуатации. В состав службы АСУД с применением ПЭВМ должны входить специалисты со средним техническим и высшим образованием. Их подготовка должна иметь многосторонний комплексный характер. Обслуживание систем требует знаний в области измерительной техники, логических устройств, систем кодирования и передачи информации компьютеров. В то же время специалисты должны владеть элементами организации движения, знать свойства транспортных потоков, быть знакомыми с основами строительного и монтажного дела.

Современная АСУД – это комплекс строительных сооружений, кабельных проводок, сложнейших электронных и логических схем и сети компьютеров.

В данной книге делается попытка обобщить и систематизировать материал и опыт разработки и создания АСУД на базе ПЭВМ и микропроцессорной техники.

Изложенный в книге материал рассчитан на студентов специальностей «Организация и безопасность дорожного движения» и специалистов в области проектирования и эксплуатации АСУД.

Эффективность функционирования городского хозяйства зависит от своевременности, полноты и достоверности получаемой информации с различных участков города и выдачи на них управляющих воздействий. Поэтому представляется целесообразным на базе АСУД создавать региональные системы оперативного реагирования. Такое решение возможно потому, что АСУД имеет около 60% резерва по передаче потоков информации.

Основное назначение региональной системы оперативного реагирования заключается в получении в реальном масштабе времени информации об оперативной обстановке на дорогах города, своевременном реагировании на изменение в обстановке непосредственно или через административные органы.

В состав системы при полном развитии могут входить:

АСУ дорожным движением – АСУД;

система автоматического контроля местонахождения специальных автомобилей – патрульных, скорой помощи и др.;

система оперативного контроля загрязнённости воздушной среды – система «ЭКО»;

система предупреждения факторов посягательства на имущество и жизнь граждан – система «ПОСТ»;

система анализа условий движения транспортных потоков – АСУД ТП.

Все перечисленные системы создаются на основе существующих в городе каналов приёма передачи дискретной информации с перекрёстков в центральный управляющий пункт АСУД, где происходит её разделение по функциональным компьютерам.

Заключение

АСУД предназначена для управления транспортными и пешеходными потоками на дорожно-транспортной сети.

Задачи, решаемые системой:

сбор информации о параметрах транспортных потоков и режимах функционирования технических средств системы;

обработка статистической информации по параметрам транспортных потоков и информации для расчёта оптимальных схем организации движения, циклов, распределения и длительностей фаз, расчёта ПК;

обработка статистических данных по режимам функционирования технических средств системы и ведение базы данных по расстановке оборудования на дорожной сети (знаков, дорожных ограждений);

управление светофорной сигнализацией.