Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Фотодокументирование. Появление, развитие, применение.

Содержание:

ВЕДЕНИЕ

Фотодокументы являются одним из важнейших источников информации.Способность фиксировать событие в тот момент, когда оно происходит, запечатлевая, при этом, мельчайшие детали и подробности, попавшие в кадр, делают их уникальными источниками.

Фотография - научно-практический способ сохранения во времени изображений на специальных светочувствительных материалах. Разработка методов и средств относится к науке, тогда как результатами их применения являются визуальные изображения, фотодокументы.

Значение фотодокументов определяется задачами их создания и непосредственно самими объектами фиксации изображений. Научные явления, исторические события и человек в контексте этих событий, материальные предметы и объекты древнего и современного происхождения имеют бытовое, художественное и исследовательское значение.

В тех случаях, когда фотодокумент является единственным или наиболее визуально четким относительно других материальных свидетельств, его значение возрастает.

В наши дни в мире происходят существенные изменения, связанные с внедрением новейших информационных технологий в различные области экономики, науки и техники, культуры и искусства. Этот процесс затронул и Россию, где, как и в других странах, неуклонно растет объем технотронных документов, возникших в результате использования современных носителей информации, автоматизированных систем управления, проектирования и обработки информации.

ГЛАВА 1. ИСТОРИЯ РАЗВИТИЯ ФОТОДОКУМЕНТИРОВАНИЯ

1.1 Предпосылки появления фотодокументирования

Изобретение фотографии стало результатом труда ученых многих поколений из разных стран мира. Одной из предпосылок изобретения фотографии стала камера-обскура, иначе темная комната, свойство которой заключается в том, что луч солнца, проникая в нее сквозь небольшое отверстие, оставляет на плоскости световой рисунок предметов внешнего мира. Это свойство было известно еще Аристотелю. Другой предпосылкой стало изобретение очков в XIII веке. В результате камера-обскура была снабжена двояковыпуклой линзой и использовалась для механической зарисовки предметов внешнего мира. Однако решающей предпосылкой стали достижения в области химии. В XVIII веке была обнаружена чувствительность к свету растворов солей железа и солей брома, а в начале XIX века открыт основной закон фотохимии, в соответствии с которым на вещество могут химически действовать только те лучи, которые этим веществом поглощаются.

Первое в мире фотографическое изображение удалось сделать французу Ньепсу Ж.Н. в 1826 г. Он же создал и первый фотографический аппарат. Другой француз - художник-декоратор Дагер Л.-Ж.М. впервые получил снимок со сравнительно высоким качеством изображения на галогенсеребряном слое. Об изображении Дагера, получившем впоследствии название дагерротипия, было доложено 7 января 1839 г. на заседании Французской Академии. С тех пор этот день стал отмечаться как день рождения фотографии.

Однако период дагерротипии оказался недолог, вследствие его дороговизны. В дальнейшем фотография развивалась по способу английского изобретателя Тальбота В.Ф.Г., открывшего негативно-позитивный процесс и еще в 1835 г. получившего первый в мире негатив и позитивный отпечаток с него на бумаге, пропитанной хлористым серебром.

В России первые фотографические изображения были получены в 1839г. русским химиком и ботаником Фрицше Юлием Федоровичем, который, изучив метод Талболта, предложил в целях улучшения изображения заменить тиосульфат натрия (гипосульфит) в проявляющем растворе на аммиак, а уже в следующем году в Москве открылась первая в нашей стране фотостудия.

Большой вклад в развитие фотографии внесли и другие русские ученые и изобретатели. Изобретатель Болдырев И.В. предложил способ изготовления прозрачной гибкой пленки за несколько лет до выпуска подобных пленок американской фирмой «Кодак».

Юрковский С.А. изготовил шторнощелевой затвор для коротких экспозиций. Филипенко И.И. сконструировал походную фотолабораторию.

С первых лет своего существования она получила применение не только в быту, но и использовалась в решении сугубо научных задач.

Фотография была включена в коммуникативный процесс в начале 1850 г., когда французский фотограф Диздери А. приклеил на кусочек картона свой фотоснимок и стал использовать его как визитную карточку. Это послужило толчком для появления разнообразных документов, циркулирующих в обществе и удостоверяющих личность, а также семейных и др. фотоальбомов, воплотивших в себя ассоциативную историческую память поколений.

Затем фотографии стали тиражироваться и широко распространяться. В 1890г. широкое распространение получили почтовые карточки с фотографиями и серии таких карточек.

Основоположником научной и судебной фотографии является русский специалист Буринский Е.Ф. В 1894г. по поручению Российской Академии наук он организовал лабораторию фотографического восстановления древних письмен. Им был разработан метод, позволивший прочесть исчезнувший текст грамот XIV в. на сыромятных кожах, которые ранее были признаны исследователями безнадежными. Буринский применил разработанный им метод восстановления угасших текстов, который состоит в ступенчатом повышении контраста первоначального текста.

Ввиду большого исторического значения этой работы, Российская Академия наук удостоила Буринского Е.Ф. премии имени Ломоносова М.В. «за метод исследования, равный значению микроскопа».

Цветное фотоизображение впервые получил в 1861 г. Максвелл Дж., затем Л. Дюко дю Орон. В 1935 г. фирма «Кодак» разработала применяемую до сих пор цветную фотографию на трехслойных пластинках.

С этого времени началось развитие цветной фотографии. Вскоре появился комбинированный документ - фоторепортаж и родилась фотожурналистика, а с 1947 г. начали печататься (в Италии) фотороманы.

В дальнейшем происходило постоянное совершенствование процессов фотодокументирования. В частности, в 1947 г. был изобретен так называемый диффузионный фотографический процесс, который привел к созданию фотоаппаратов для моментальной фотосъемки, т.е. к получению готового фотоснимка непосредственно в фотоаппарате.

Родоначальником изучения фотодокументов как исторических источников и объектов архивного хранения является Матушевский, который в конце XIX в. впервые в истории пытался рассмотреть фотодокументы в источниковедческом и архивоведческом ракурсе, опубликовав в Париже в течение 1898-1901 гг. четыре очерка: «Новый источник истории. О создании хранилища исторических документов», «Живая фотография. Чем она является, чем должна стать», «Новое в графологии и экспертизе почерков» и «Портреты на стеклах, покрытых эмалью (одно открытие)».

В нашей стране впервые академик Стасов В.В. еще на заре появления фотографии указал на неисчерпаемые возможности ее применения при съемке различных микроскопических объектов, копировании (например, иероглифов в Фивах, Мемфисе), изучении человеческих рас и т.д.

Именно Стасовым В.В. была выдвинута программа создания и сохранения для истории фотографических коллекций, их использования в области просвещения. На основе материалов периодической печати начала второго десятилетия XX в. можно говорить о том, что в России раньше, чем в других странах, рассматривалась проблема организации государственного хранения кинодокументов и близких к ним фотографических коллекций и звукозаписей.

Речь идет о 1913 г., когда впервые дискутировался вопрос о создании государственного киноархива. Группа общественных деятелей обратилась к депутатам Государственной Думы с просьбой выработать законопроект об устройстве государственного хранилища кинематографических лент. В документе, подготовленном по этому поводу, давалось не только практическое, но и научное обоснование этой акции. Так, например, достаточно четко и определенно отмечалось истинное значение для истории страны многих кинематографических изображений, зафиксировавших «моменты современности, а также отдельные моменты из жизни современных, великих и выдающихся людей, «портреты» этих людей, не с одним застывшим выражением лица, а портреты «живые», которые могут дать в будущем несравненно более яркое представление о данном человеке и большой материал для его характеристики, чем современные фотографии».

На основании Положения об архивном управлении РСФСР 1929 г. кинофотодокументы были не только впервые включены в состав Государственного архивного фонда страны, но и в нем были предусмотрены важнейшие моменты для того времени и весьма актуальные в наши дни, связанные с государственным учетом этих документов, как применительно к деятельности государственных учреждений, так и частных лиц, а также организацией работы по комплектованию ими специализированных архивов.

Большой вклад внес профессор Болтянский Г.М., классик советской кинофото-документалистики.

Таким образом, с момента изобретения фотографического способа технология продвинулась далеко вперед. Если раньше создание фотографии было сложным и дорогостоящим химическим процессом, то сейчас качественную фотографию может сделать почти каждый, не прилагая особых усилий и не используя специальных знаний о фотосъемке. Можно заметить некую закономерность: с усовершенствованием фототехники повышается общедоступность, а чем более общедоступным становится фотография, тем ее ценность как документа и исторического источника снижается. Развитие технологии создания фотографии повлияло на само понимание фотографии как документа.

1.2 Эволюция аналогового способов создания фотодокументов

Период времени на протяжении, которого доминировал именно аналоговый способ взаимодействия человека с его информационным имуществом успешно продлился в плоть до наших дней, лишь совсем недавно, уже в ХХI веке, окончательно уступив цифровому формату.

Очертив приблизительные временные и смысловые рамки аналогового этапа нашей цивилизации, можем рассмотреть эволюционный путь аналогового способа создания фотодокументов.

До середины XIX века, среди основных способов записи данных можно выделить два основных, это письмо и живопись. Существенное различие этих способов регистрации информации, абсолютно независимо от носителя, на котором она осуществляется, кроется в логике регистрации информации.

Живопись представляется наиболее простым способом передачи данных, не требующим, каких-то дополнительных знаний, как на этапе создания, так и пользования данными, тем самым фактически являясь исходным форматом воспринимаемым человеком. Чем более точно идет на поверхность холста передача отраженного света от поверхности окружающих предметов на сетчатку глаза писца, тем более информативное будет это изображение.Любое растровое изображение дискретно, оно представляет собой набор точек.

На основе множества проведенных исследований было установлено, что человек со среднестатистической остротой зрения, с комфортного для чтения информации расстояния (30 см), может различит около 188 линий на 1 сантиметр, что в современной технике приблизительно соответствует стандартному параметру сканирования изображения бытовыми сканерами в 600 dpi. Следовательно, с одного квадратного сантиметра плоскости, без дополнительных приспособлений, среднестатистический человек может считать 188:188 точек, что будет равноценно:

- для монохромного изображения - 4.31 кбайт;

- для изображения фотографического качества - 103.55 кбайт.

Еще одним способом аналоговой передачи информации является письмо. Очевидные различие в способах передачи информации между текстом и рисунком диктуют различный подход в определении информативности этих форм. В отличие от изображения, письмо - это вид стандартизированной, кодированной передачи данных. Не зная заложенного в письмо кода слов и формирующих их букв информативная нагрузка, например шумерской клинописи, ничего не значит, в то время как древние изображения на руинах того же Вавилона будут вполне корректно восприняты даже человеком абсолютно не сведущим о тонкостях древнего мира. Становится вполне очевидным, что информативность текста чрезвычайно сильно зависит от того в чьи руки он попал, от дешифрирования ее конкретным человеком.

Тем не менее, даже при таких обстоятельствах, несколько размывающих справедливость нашего подхода, мы можем вполне однозначно рассчитать то количество информации, которое размещалось в текстах на разного рода плоских поверхностях.

Любой нанесенный стандартный знак алфавитного письма на поверхность, занимает 1 байт в цифровом эквиваленте.

XIX век стал переломным, как для способов регистрации, так и хранения аналоговых данных, это стало следствием появления революционных материалов и методик записи информации, которым предстояло изменить ИТ-мир. Одним из главных новшеств стала технология записи звука.

Изобретение фонографа Томасом Эдисоном породило существование сначала цилиндров, с нанесенными на них бороздами, а в скором и пластинок - первых прообразов оптических дисков.

Реагируя на звуковые вибрации, резец фонографа неустанно проделывал канавки на поверхности как металлических, так и чуть позднее полимерных. В зависимости от уловленной вибрации резец наносил на материале закрученную канавку разной глубины и ширины, что в свою очередь давало возможность записывать звук и чисто механическим способом обратно воспроизводить, уже однажды выгравированные звуковые вибрации.

Последним и, пожалуй, наиболее эффективным носителем данных, наносимых и читаемых аналоговыми методами, стала магнитная лента. Лента фактически единственный носитель, который довольно успешно пережил аналоговую эру.

Сама технология записи информации способом намагничивания, была запатентована еще в конце ХIХ века датским физиком Вольдемаром Поультсеном, однако, тогда она широкого распространения не приобрела. Впервые, технология в промышленном масштабе была использована только лишь в 1935 году немецкими инженерами, на ее базе был создан первый пленочный магнитофон. За 80 лет своего активного использования магнитная лента претерпела существенные изменения. Использовались разные материалы, разные геометрические параметры самой ленты, но все эти усовершенствования базировались на едином принципе, выработанном еще 1898 году Поультсеном, магнитной регистрации колебаний.

Одним из наиболее широко используемых форматов стала лента, состоящая из гибкой основы, на которую наносилась одна из окисей метала (железо, хром, кобальт). Ширина ленты, использующаяся в бытовых аудио магнитофонах, обычно была одно дюймовая (2.54 см), толщина ленты начиналась от 10 мкм, что касается протяженности ленты, то она существенно варьировалась в разных мотках и чаще всего составляла от сотен метров до тысячи. Для примера на бобину диаметром в 30 см могло вместится около 1000 м ленты.

Качество звучания зависело от многих параметров, как самой ленты, так и считывающей ее аппаратуры, но при правильном сочетании этих самых параметров на магнитную ленту удавалось делать высококачественные студийные записи. Более высокое качество звучания добивались использованием большего объема ленты для записи единицы времени звука. Естественно, чем больше ленты используется для записи момента звучания, тем более широкий спектр частот удалось перенести на носитель. Для студийных, высококачественных материалов скорость регистрации на ленту составляла не менее 38.1 см/сек. При прослушивании записей в быту, для достаточно полного звучания хватало записи, осуществленной на скорости в 19 см/сек. Как результат, на 1000 м бобине могло разместится до 45 минут студийного звучания, либо до 90 минут приемлемого, для основной массы потребителей, контента. В случаях технических записей, либо речей, для которых ширина частотного диапазона при воспроизведении не играла особой роли, при расходе ленты в 1.19 см/сек на вышеупомянутую бобину, существовала возможность записать звуков на 24 часа.

Не стоит забывать, что конкретный метраж ленты в бобине был весьма разным, это зависело, прежде всего, от самого диаметра бобины и толщины ленты. Довольно распространенными, в следствии приемлемых габаритов, широко использовались бобины, вмещающие в себя 500-750 метров пленки, что для рядового меломана было эквивалентом часового звучания, чего было вполне достаточно для тиражирования среднестатистического музыкального альбома.

Ярким примером можно также назвать видео кассеты, в которых использовался все тот же принцип регистрации аналогового сигнала на магнитную ленту. Ко времени промышленного использования этой технологии плотность записи на магнитную ленту кардинально возросла. На полудюймовую пленку длиной в 259.4 метра умещалось 180 минут видеоматериала с весьма сомнительным, как на сегодняшний день, качеством. Первые форматы видеозаписи выдавали картинку на уровне 352х288 линий, наилучшие образцы показывали результат на уровне 352х576 линий. В пересчете на битрейд, наиболее прогрессивные методы воспроизведения записи давали возможность приблизится к значению в 3060 кбит/сек, при скорости считывания информации с ленты в 2.339 см/сек. На стандартной трехчасовой кассете могло разместиться около 1724.74 Мбайт, как результат видеокассеты массово оставались востребованными еще до самого недавнего времени.

1.3 Этапы развития цифровой фотографии и перспективы фотодокументирования

Появление и повсеместное внедрение цифры (бинарного кодирования) целиком и полностью обязано ХХ веку.

Перфокарты стали, пожалуй, первой ступенькой на пути взаимодействия ЭВМ и человека.

Одним из самых распространенных форматом перфокарт, был формат IBM введен еще в 1928 году. Этот формат стал базовым и для советской промышлености. Габариты такой перфокарты по ГОСТу составляли 18.74 х 8.25 см. Вмещалось на перфокарту не более 80 байт, на 1 см2 приходилось всего 0.52 байта. В таком исчислении, для примера, 1 Гигабайт данных был бы равен примерно 861.52 Гектарам перфокарт, а вес одного такого Гигабайта составлял чуть менее 22 тонн.

В 1951 году были выпущены первые образцы носителей данных базирующихся на технологии импульсного намагничивания ленты специально для регистрации на нее «цифры». Такая технология позволяла вносить на один сантиметр полудюймовой металлической ленты до 50 символов. В дальнейшем технология серьезно усовершенствовалась, позволяя увеличивать количество единичных значений на единицу площади, а также как можно более удешевлять материал самого носителя.

По заявлениям корпорации Sony, их нано разработки позволяют разместить на 1 см2 объем информации равен 23 Гигабайтам. Такие соотношения цифр наталкивают на мысль, что данная, технология ленточной магнитной записи себя не отжила и имеет довольно позитивные перспективы дальнейшей эксплуатации.

Грамм запись - наиболее удивительный метод хранения цифровых данных, но лишь на первый взгляд. Идея записи действующей программы на тонкий слой винила возникла в 1976 году в компании Processor Technology, что базировалась в Канзас Сити, США. Суть задумки состояла в том, чтоб максимально удешевить носитель информации. Сотрудники компании взяли аудио ленту, с записанными данными в уже существующем звуковом формате «Канзас Сити Стандарт», и перегнали ее на винил. Кроме удешевления носителя, данное решение позволило подшить выгравированную пластинку к обычному журналу, что позволило массово распространять небольшие программы.

В мае 1977 года подписчики журналов, в первые получили в своем номере пластинку, на которой размещался интерпретатор 4К BASIC для процессора Motorola 6800. Время звучания пластинки составляло 6 минут.

Данная технология не прижилась, официально, последняя пластинка, так званный Floppy-Rom, была выпущена в 1978 году, это был ее пятый выпуск.

Первый винчестер был представлен компанией IBM в 1956 году, модель IBM 350 шла в комплекте с первым массовым компьютером компании. Общий вес такого «жесткого диска» составлял 971 кг. По габаритам он был сродни шкафу. Располагалось в нем 50 дисков, диаметр которых составлял 61 см. Общий объем информации, который мог разместиться на этом «винчестере» равнялся скромным 3.5 мегабайтам.

Сама технология записи данных была, если можно так сказать, производной от грамзаписи и магнитных лент. Диски, размещенные внутри корпуса, хранили на себе множество магнитных импульсов, которые вносились на них и считывались подвижной головкой регистратора. Словно патефонному волчку в каждый момент времени регистратор перемещались по площади каждого из дисков, получая доступ к необходимой ячейке, что несла в себе магнитный вектор определенной направленности.

На данный момент вышеупомянутая технология также жива и активно развивается. Менее года назад компания Western Digital выпустила первый в мире «винчестер» объемом в 10 Тбайт. В середине корпуса разместилось 7 пластин, а вместо воздуха в середину его был закачан гелий.

Оптические диски обязаны своим появлением партнерству двух корпораций Sony и Philips. Оптический диск был презентован в 1982 году, как годная, цифровая альтернатива аналоговым аудио носителям. При диаметре 12 см на первых образцах можно было разместить до 650 Мбайт, что при качестве звука 16 бит / 44.1 кГц, составляло 74 минуты звучания и это значение было выбрано не зря. Именно 74 минуты длится 9-я симфония Бетховена, которую чрезмерно любил толи один из совладельцев Sony, толи один из разработчиков со стороны Philips, и теперь она могла целиком вместится на один диск.

Технология процесса нанесения и считывания информации весьма проста. На зеркальной поверхности диска выжигаются углубления, которые при считке информации, оптическим способом, однозначно регистрируются как 1 / 0.

Технология оптических носителей также существует и в наше время. Технология известная как Blu-ray disc с четырехслойной записью вмещает на своей поверхности около 111.7 Гигабайт данных, при своей не слишком высокой цене, являясь идеальными носителями для весьма «емких» фильмов повышенной разрешающей способности с глубокой передачей цветов.

Твердотельные накопители, флэш память, SD карты. Разработанный еще в 1950-х годах принцип записи данных на основе регистрации электрического заряда в изолированной области полупроводниковой структуры долгое время не находил своей практической реализации для создания на его базе полноценного носителя информации. Главной причиной этому были большие габариты транзисторов, которые при максимально возможной их концентрации не могли породить на рынке носителей данных конкурентный продукт. О технологии помнили и периодически пытались ее внедрить на протяжении 70х-80х годов.

Однако в 1989 году японская фирма Toshiba презентовала абсолютно новый тип памяти «Flash», от слова «вспышка». Само это слово весьма хорошо символизировало главные плюсы и минусы носителей, реализованных на принципах данной технологии. Небывалая ранее скорость доступа к данным, довольно ограниченное количество циклов перезаписи и необходимость присутствия внутреннего источника питания для некоторых из такого рода носителей.

ЗАКЛЮЧЕНИЕ

Фотодокумент - это документ, созданный фотографическим способом.

С фотодокументами тесно связано развитие отраслей, занимающихся технической обработкой информации: полиграфии, картографии, репрографии. Фотодокументам отводится важная роль в средствах массовой информации. Они являются важнейшим историческим источником. Фотография заняла прочное место в документах, удостоверяющих личность: в паспортах, студенческих билетах, водительских удостоверениях и т.п.

Такое важное значение фотодокументы приобрели, прежде всего, потому, что обладают огромной информационной емкостью, могут одновременно и в деталях фиксировать множество объектов. В библиотеках, архивах и музеях возникает масса проблем в связи с возможным повреждением или утратой ценнейших фотодокументов. В целях обеспечения сохранности фотодокументов и своевременного выявления возникающих на них дефектов, документы должны подвергаться периодическому контролю в процессе хранения.