Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Принцип работы 3D монитора

Содержание:

Введение

На сегодняшний день сфера 3D дисплеев вызывает интерес, о ней много пишут, в основном о конкретном производителе или модельном ряде. Та часть технических обзоров или статей содержат в себе описания случайного набора из очков, шлемов и, собственно, 3D дисплеев.

В данный момент на рынке отсутствует классификация существующих 3D дисплеев, что приводит к путанице при попытке их классификации. Это приводит к систематическим ошибкам, солидные фирмы-производители зачастую называют свои изделия не тем, чем они являются на самом деле.

Целью написания данного реферата является систематизация материала о принципах работы, достоинствах и недостатках моделей, и прототипах, присутствующих на рынке. Т.к. большая часть инновационных технологий в сфере отображения 3D находится лишь на стадии патентной документации.

Классификация

На данный момент 3D дисплеем называется любое устройство, способное вывести изображение, воспринимаемое человеком как объемное, без очков или других дополнительных устройств.

Пространство, в котором можно наблюдать изображение, формируемое 3D дисплеем, объемом воспроизведения, а пространство, в котором находится зритель - объемом наблюдения. Только находясь внутри объема наблюдения человек вправе рассчитывать на восприятие неискаженного объемного изображения, заключенного в объем воспроизведения.

3D дисплеи подразделяются на группы, по способности отображения объемной информации:

  1. Стереоскопические. Воспроизводят два ракурса объемной сцены, один из которых предназначен для левого, а другой - для правого глаза.
  2. Мультивидовые. Воспроизводят несколько последовательных ракурсов объемной сцены, любые два из которых составляют стереопару.
  3. Голографические. Воспроизводят непрерывное световое поле, соответствующее световому полю реальной 3D сцены.
  4. Волюметрические. Воспроизводят изображение в виде набора точек (вокселей) или векторов, физически разнесенных в ограниченном рабочем пространстве дисплея (объеме воспроизведения).

Вопрос объемного восприятия окружающего мира является непростым. При наблюдении происходящих вокруг событий мозг, с помощью алгоритмов учитывающих множество факторов «вычисляет» объем.

3D дисплей должен формировать изображение с учетом различных факторов и их взаимосвязей. Исходя из этого, можно проанализировать перечисленные выше типы 3D дисплеев и выделить их достоинства и недостатки.

СТЕРЕОСКОПИЧЕСКИЕ 3D ДИСПЛЕИ

Стоит отметить, что на сегодняшний день к этому типу относятся практически все серийно выпускаемые устройства, какими бы эпитетами вроде "реальное 3D", "суперобъемный", "ошеломляюще реалистичный", "голографический" и пр. не украшались их рекламные буклеты и пресс-релизы.

Схема работы стереоскопического 3D дисплея

Во время работы стереоскопического дисплея происходит разделение объема воспроизведения на две части условной вертикальной плоскостью, перпендикулярной плоскости экрана и проходящей через его центр. Слева от плоскости наблюдается изображение для левого глаза, справа - для правого.

Очевидно, что для наблюдения стереоизображения человек должен располагать голову так, чтобы каждый глаз находился в "своем" пространстве, подобные дисплеи быстро вызывают чувство утомления, усталость глаз.

"Однопользовательскую" конфигурацию легко дополнить автоматикой, которая поворачивает разделительную плоскость вслед за движением головы пользователя (tracking).

Технически для производства стереоскопических 3D дисплеев лучше всего подходят LCD или плазменные панели, поскольку пиксели в них жестко привязаны к месту, в отличии от CRT мониторов, где изображение может слегка сдвигаться и изменять свой масштаб.

Параллакс-барьер, самый простой способ разделения стереоракурсов (осуществимый даже в "домашних" условиях, если в наличии имеется LCD монитор). Нужно напечатать на прозрачной пленке рисунок, состоящий из вертикальных черных полосок с шагом в два пиксела вашего монитора, такой ширины, чтобы между ними остались узкие прозрачные полоски. Если наложить полученный растр на экран, с определенной позиции будут видны только четные пикселы, а с другой - только нечетные.

Необходимо обратить внимание на зазор между растром и панелью, обеспечивающий необходимый угол обзора. Осталось вывести на экран специально подготовленное изображение, в котором чередуются пиксели левого (L) и правого (R) ракурсов.

Недостатком щелевого растра является существенное снижение яркости монитора, поскольку часть световой энергии поглощается черными полосками. Естественным развитием щелевых растров являются линзовые растры, так же, как объектив фотоаппарата является развитием маленького отверстия камеры-обскуры.

Существенным недостатком метода параллакс-барьера, независимо от его технической реализации, является то, что он формирует не одну условную плоскость, а несколько.

В разделяемых ими областях наблюдения чередуются L и R ракурсы, так, что при смещении наблюдателя на некоторый угол от главной плоскости возникает неприятный эффект, называемый "псевдоскопическим", когда правый глаз видит левую картинку и наоборот.

Следующий недостаток - снижение горизонтального разрешения 3D дисплея вдвое по сравнению с моно, ведь пиксели нужно делить между двумя ракурсами стереоизображения. Определенные усилия разработчиков направлены на возможность полного использования разрешения 3D дисплея в моно-режиме.

Щелевые растры делают электрически отключаемыми, например, на основе жидких кристаллов. Естественно, что линзовый растр отключить невозможно. Другой вариацией параллакс-барьера является метод параллаксного освещения. LCD панель освещается набором тонких вертикальных источников света.

И, наконец, самый главный недостаток. Стереоизображение недаром называют самой большой иллюзией в истории человечества. Во время отображения стереокартинки, мозг легко впадает в заблуждение, что перед объектом показа находится истинно объемное изображение. Но лишь до тех пор, пока зритель неподвижен. Стоит чуть наклонить голову или переместиться, как изображение претерпевает искажения, совершенно не свойственные реальным предметам, поскольку каждый глаз по-прежнему видит изображение, полученное соответствующей ему камерой из фиксированной точки пространства.

Изображение, сформированное стереодисплеем, воспринимается без искажений лишь в одной точке наблюдения, когда положение каждого глаза наблюдателя точно соотносится с положением камер при съемке. По той же причине невозможны такие эффекты, как "оглядывание" и динамический параллакс.

Популярность данной технологии при большом количестве недостатков обусловлена ее доступностью при текущем уровне технического прогресса. Для стереодисплея сегодня существует вся технологическая цепочка уровня

устройство-драйвер-программа-контент, имеется полная инфраструктура для производства, продажи и использования, имеется все необходимое программное обеспечение.

Индустрия производства 3D дисплеев быстро развивается, наличие отображаемого контента увеличивается, что в свою очередь создает спрос на подобный класс устройств.

Цены на стереоскопические 3D дисплеи все еще высоки, хотя себестоимость аппаратной части не имеет существенных отличий от обычных LCD мониторов. Причина в незначительном пока объеме выпуска, однако соразмерно росту индустрии и доступности производства цена будет постепенно опускаться.

Достоинства

  • Достоинством стереоскопических дисплеев является относительная простота изготовления, есть серийно выпускаемые модели;
  • невысокая себестоимость, возможно снижение цены в обозримом будущем;
  • реально достижимая скорость потока данных (двукратное увеличение от моно);
  • наличие контента, драйверов, программ

Недостатки

  • невозможность "оглядывания" и динамического параллакса;
  • очень ограниченная зона стереоэффекта;
  • наличие зон "неправильного" псевдоскопического эффекта;
  • вдвое меньшее горизонтальное разрешение в стереорежиме

Естественно, не все из сказанного выше верно для любого конкретного дисплея, существует множество способов преодоления того или иного недостатка, но главный недостаток можно устранить только в 3D дисплеях, относящихся к другим группам.

МУЛЬТИВИДОВЫЕ (MULTIVIEW) 3D ДИСПЛЕИ

Как следует из определения, данного в первой части данного реферата, мультивидовые 3D дисплеи воспроизводят объемное изображение в виде нескольких последовательных ракурсов объемной сцены, любые два из которых составляют стереопару.

Схема работы мультивидового дисплея

Во время работы дисплея происходит разделение объема воспроизведения несколькими условными вертикальными плоскостями, проходящими через центр экрана. В каждой части разбитого плоскостями пространства наблюдается свой вид (ракурс) объемной сцены.

Поскольку M3D являются развитием идеи стереодисплея, то для их построения применимы те же технологии параллакс-барьеров и линзовых растров, только за каждой линзой должно располагаться столько пикселей, сколько ракурсов изображения необходимо получить. Очевидно, что существующие сегодня LCD панели не позволяют получить по такой схеме достойное качество изображения.

В качестве примера приведен монитор 17", имеющий 1280х1024 пикселя размером 0,27мм. В случае, если необходимо получить 5 ракурсов, придется использовать линзовый растр с шагом 1,35мм, а горизонтальное разрешение уменьшится до 256 пикселов.

Однако существует технология, позволяющая использовать массив пикселей лучшим способом. Это голографические оптические элементы (Holographic Optical Elements - HOE ). Перед LCD панелью помещается пленка, состоящая из миниатюрных голограмм, каждая из которых закрывает один пиксель и направляет проходящий свет в одном из заданных направлений.

Голограммы, формирующие столько различных направлений, сколько нужно ракурсов, объединяются в патерн, повторяющийся по всей поверхности экрана. Для получения четырех ракурсов используются группы 2х2 пиксела, для девяти ракурсов - 3х3, т.е. для того же 17" монитора разрешение будет 640х512 и 427х341 пиксель соответственно.

Конечно, для работы с текстом такой монитор уже не годится, а вот графика и видео будут отображаться в лучшем разрешении (для сравнения: видеомагнитофон формата VHS воспроизводит изображение с разрешением примерно 384х288 пикселей). Учитывая, что разрешение LCD панелей непрерывно растет, а производство голографической пленки реально уже сейчас, можно ожидать появление серийных моделей M3D в недалеком будущем.

Исходя из вышеизложенного становится важным вопрос количества отображаемых ракурсов. Ответ зависит от конкретного назначения M3D и поддается точному расчёту. Для комфортного просмотра видео бывает достаточно 4-6 ракурсов, тогда как для серьезных применений, таких как 3D-томография и рентген, графические рабочие станции CAD/CAM, отображение оперативной обстановки (авиадиспетчерские, аварийно-спасательные службы) и т.д., может, понадобится от 40 до 150 ракурсов. Известно несколько прототипов M3D с числом ракурсов более 40.

В одном из них электромеханическая зеркальная система разворачивает пакет лучей от 48 полупроводниковых лазеров, по одному на каждый ракурс, в другом около 100 ракурсов формируются с помощью оптических волокон толщиной 10 микрон, соединенных в упорядоченный оптический кабель, по которому изображение от нескольких серийных видеопроекторов подводится к линзовому растру.

Проблема M3D состоит не столько в изготовлении самого устройства, сколько в получении необходимой для отображения информации.

Даже стереовидеокамеры до сих пор остаются экзотикой, восьмиракурсная видеокамера применялась в прототипе многоракурсной телевизионной системы НИКФИ, а видеокамеру с большим числом ракурсов представить сложно. Настолько же проблематична запись и передача по каналам связи такого сигнала.

На данный момент разрабатываются два диаметрально противоположных подхода к этой проблеме. Первый предполагает сжатие многоракурсной информации на основе межракурсных разностей (имеется большое сходство с технологией MPEG) с последующей распаковкой при воспроизведении, второй - восстановление промежуточных ракурсов из стереопары.

Прототип системы второго типа с четырьмя видеопроекторами, ретрорефлективным экраном и компьютером, вычисляющим промежуточные ракурсы с помощью нейросетевых алгоритмов был разработан и успешно продемонстрирован компанией НейрОК Оптикс. Восстановление большего числа ракурсов требует существенных вычислительных мощностей. Еще большие ресурсы необходимы для построения множества ракурсов 3D сцены, описанной набором векторов или массивом вокселей.

Достоинства

  • широкая зона стереоэффекта;
  • большая глубина объема воспроизведения;
  • возможность "оглядывания" и динамического параллакса;
  • наличие контента (потенциально);
  • возможность отображения непрозрачных объектов, т.е., потенциально, реалистичная
  • графика и видео

Недостатки

  • техническая сложность и себестоимость быстро возрастают с увеличением числа воспроизводимых ракурсов;
  • небольшой угол обзора (от 24 до 50 градусов против 160 и более у обычных мониторов);
  • требуется большая скорость потока данных (кратное числу ракурсов увеличение от моно) или существенный объем вычислений для кодирования и декодирования данных;
  • отсутствует программное обеспечение

Вряд ли в ближайшие год - два стоит ожидать появления недорогих серийных моделей мультивидовых 3D дисплеев для домашнего использования, хотя многие серьезные производители дисплеев имеют свои прототипы. Например, линейка дисплеев с 3, 5, 7, и 9-ю ракурсами у Philips, шестнадцатиракурсный дисплей у Samsung.

ГОЛОГРАФИЧЕСКИЕ 3D ДИСПЛЕИ

В первой было определено, что голографические 3D дисплеи воспроизводят непрерывное световое поле, соответствующее световому полю реальной 3D сцены. Однако, современная техника немыслима без цифровой обработки сигналов, стало быть, любая непрерывная функция с некоторой точностью апроксимируется рядом дискретных значений. Световое поле не исключение, поэтому H3D можно рассматривать как дальнейшее развитие мультивидовых дисплеев с очень большим количеством воспроизводимых ракурсов.

Схема работы голографических дисплеев

Работа голографического дисплея происходит через разделение объема воспроизведения множеством условных вертикальных плоскостей, проходящих через центр экрана. В каждой части разбитого плоскостями пространства наблюдается свой вид (ракурс) объемной сцены.

Обычно, когда речь заходит о H3D, имеют в виду устройство, способное воспроизводить на неком материале подобие традиционной голограммы, то есть вычислять и отображать фиксируемую ей в виде дифракционных структур интерференционную картину светового поля, причем делать это в реальном времени. Такой подход не учитывает, что каждый малый участок голограммы представляет из себя дифракционную решетку, выполняющую роль отклоняющего элемента и нет нужды каждый раз, когда нужно изменить угол отклонения луча, рассчитывать и отображать ее.

На данный момент есть группа ученых, активно изучающих данную сферу, несмотря на огромные финансовые и временные затраты. Например, американцы из Массачусетского технологического института разработали прототип, в котором воспроизводится изображение, рассчитанное на компьютере. Голограмма формируется с помощью акустооптического модулятора: луч лазера модулируется акустическими колебаниями, воздействующими на кристалл, который расположен перед фокусирующей линзой.

Прорисовка изображения выполняется механической зеркальной разверткой. Для монохромной картинки размером 15 x 15 x 20 см требуется поток данных около 2 гигапикселей в секунду. Японцы пытаются воспроизводить голограммы с помощью проекционных LCD матриц (используются в видеопроекторах), каждая из которых воспроизводит небольшой отдельный участок голограммы. Поскольку диагональ таких матриц не превышает 1,8 дюйма, для получения голограммы нужной площади пришлось использовать множественные конфигурации и устройства сведения для объединения различных частей голограммы. Поток данных, требуемый для воссоздания полноценного образа, достигает приблизительно одного терабайта в секунду. Монохроматическая голограмма с площадью проекции 1 кв.см - это пока максимум, чего удалось добиться исследователям.

Интересна разработка, названная ее авторами "офисный голографический принтер". Хотя это устройство не имеет непосредственного отношения к 3D дисплеям, полученные результаты могут быть использованы в будущем для создания H3D.

Принтер позволяет печатать на фоточувствительном материале однопроходные голограммы, качество которых во многих случаях превосходит качество традиционных голограмм. Голограмма получается путем последовательной экспозиции узких полосок фотоматериала через щелевую маску. На каждой полоске по традиционной технологии получения голограмм фиксируется образ цилиндрической линзы, за которой располагается LCD матрица с выведенным на нее специально подготовленным изображением. В результате получается голограмма линзового растра очень высокого разрешения (до 250 lpi), идеально совмещенного с изображением, содержащим до 150 ракурсов предварительно отснятой или смоделированной на компьютере 3D сцены.

Исследования, проведенные при разработке голографического принтера, показали, что голограмма 3D объекта может быть рассчитана как совокупность голографических образов, составляющих его вокселей. Образ вокселя представляет из себя фиксированный паттерн, зависящий только от "глубины залегания", т.е. Z-координаты вокселя и не зависящий от координат X и Y. Паттерны для всего диапазона значений Z могут быть рассчитаны заранее и помещены в таблицу, откуда будут извлекаться при выводе в реальном времени с минимальным количеством вычислительных операций.

Паттерны для систем на основе линзовых растров имеют простейший вид группы вертикальных штрихов и могут рассчитываться непосредственно в процессе вывода изображения. Отличие данного метода от классической голограммы состоит в том, что формируются изображения, имеющие только горизонтальный параллакс (как, впрочем, и у всех дисплеев, описанных выше). Принцип формирования образа вокселя P из опорного пучка света S классической голограммой показан ниже.

Можно заметить, что чем дальше от поверхности находится воксель, тем большая площадь голограммы принимает участие в его формировании.

Достоинства

  • самое реалистичное 3D изображение, обладающее всеми оптическими свойствами отображаемого реального объекта

Недостатки

  • техническая сложность на пределе современных возможностей аппаратуры, вычислительных мощностей хватает только для статических изображений

ВОЛЮМЕТРИЧЕСКИЕ (VOLUMETRIC) 3D ДИСПЛЕИ

Волюметрические 3D дисплеи (далее V3D) существенно отличаются от всех рассмотренных выше типов 3D дисплеев, формирующих изображение с помощью элементов, расположенных в одной плоскости.

Схема работы волюметрического дисплея

Объекты отображаются через воспроизведение объемного изображения в виде вокселей или векторов, реально разнесенных в рабочем объеме дисплея (объеме воспроизведения), четко ограниченном его конструкцией.

Для V3D потребуется дополнительная классификация, поскольку это самая многочисленная по разнообразным технологиям группа. Примем за основу классификации три параметра: наличие в конструкции движущихся частей, тип источника изображения, заполнение объема воспроизведения. Естественно, такая классификация условна и не претендует на полноту и окончательность.

Для V3D существует всего два способа воспроизведения изображения вокселя в заданной точке пространства:

  • Поместить в эту точку вещество, способное рассеивать свет и осветить его;
  • Поместить в эту точку вещество, способное излучать свет и заставить его светиться

Оба способа предполагают, что объем воспроизведения должен быть заполнен подходящим веществом, поскольку воксель может располагаться в любой точке этого объема по определению. Причем, для первого способа сразу возникает противоречие: если вещество рассеивает свет, то оно не может быть прозрачным и нельзя увидеть воксели, располагающиеся в его глубине. И здесь в очередной раз спасает инерционность зрительного аппарата человека. Сплошной объем вещества заменяется тонким рассеивающим экраном, который периодически "сканирует" объем воспроизведения так, что за один цикл поверхность экрана проходит через все точки этого объема.

Форма поверхности экрана вызывает интерес лишь постольку, поскольку для воспроизведения 3D объектов с минимальными геометрическими искажениями требуется учитывать ее при пересчете компьютерной модели в реальные координаты. Насколько разной может быть форма поверхности, видно из сравнения двух моделей V3D: FELIX 3D и Perspecta.

В качестве примера приведен проект FELIX 3D, который использует использует экран в виде одного витка спирали для проецирования лучей трех твердотельных лазеров основных цветов. Перемещение по осям X и Y обеспечивается механической зеркальной разверткой, а по Z - положением экрана в момент включения лазеров. В каждый момент времени формируется изображение только одного вокселя, а всего за 1 оборот - около 10 000 вокселей при скорости вращения экрана 20Гц. Такое небольшое количество вокселей ограничивает сферу применения FELIX 3D векторными приложениями, например в системах CAD/CAM.

Компания Actuality Systems использует в модели Perspecta плоский экран, вращающийся вместе с системой зеркал для проецирования изображения размером 768х768 пикселов одновременно. DLP проектор успевает сформировать за время одного оборота (при частоте вращения 24Гц) 198 плоских изображений (1 бит на цвет), составляющих "нарезку" (slices) 3D сцены. Таким образом, общее количество формируемых вокселей превышает 100 миллионов, что является пока абсолютным рекордом. Проблемой подготовки информации является необходимость поворота формируемого на экране проектора изображения синхронно с вращением экрана и расчёт "нарезки". Для этого используется DSP процессор производительностью 1600 MIPS и 6 Gb DDRAM.

Для рассмотрения второго примера нужно сказать, что идея V3D с вращающимся экраном давно привлекала внимание разработчиков. Оригинальная конструкция, в которой покрытый фосфором стеклянный диск помещался внутрь электронно-лучевой трубки и приводился в движение электромотором, ротор которого располагался внутри колбы, а статор снаружи. Изображение получали, управляя отклонением электронного луча.

Однако, практического применения эта конструкция, как и сотни подобных, не нашла, поскольку формирование сигналов, необходимых для получения объемного изображения, оказалось непосильной задачей. Действительно, даже с помощью современных мощных компьютеров не так просто вычислить положение точки пересечения наклонного луча и вращающейся плоскости в реальном времени.

В плане простоты расчетов, гораздо удобнее конструкции, в которых экран или монитор движутся возвратно-поступательно, но в них очень сложно совместить высокую скорость перемещения с хорошей линейностью и отсутствием вибраций.

Достоинства

  • Истинно объемное изображение, обеспечивающее естественную связь между конвергенцией и аккомодацией, динамический параллакс и другие пространственные эффекты
  • Большой угол обзора, вплоть до 360 градусов по горизонтали и 270 градусов по вертикали

Недостатки

  • Невозможность отображения непрозрачных объектов, нельзя отобразить реалистичную графику и видео.
  • Объем воспроизведения закрыт физически, невозможно совмещение с реальными объектами
  • Требуется очень большая скорость потока данных
  • Очень высокая стоимость, от многих десятков но нескольких сотен тысяч долларов

Актуальные решения для отображения 3D графики

3D-мониторы Philips

Компания Philips представила новые мониторы Comfort, которые созданы для работы с 3D-графикой. Мониторы с диагональю 42 дюйма обеспечивают 3D-эффект без использования специальных очков.

Более того, в отличие от других подобных разработок, где трехмерную картинку можно увидеть, только если смотреть на экран с определенной точки, эти мониторы дают возможность наслаждаться 3D-эффектом сразу нескольким зрителям, которые смотрят на дисплей под разным углом.

Для работы с разными приложениями понадобятся специальные программы для преобразования контента в 3D-формат. Так, уже известно о доступности специального плагина для 3ds Max, экспортирующего содержимое в совместимый формат, и о наличии специальных инструментов для визуализации в реальном времени игр, а также других приложений.

Также известно, что пользователи смогут регулировать глубину 3D-изображения и параметры визуализации.

Zalman

О планах компании Zalman выйти на рынок 3D-мониторов стало известно на выставке CeBIT, прошедшей весной этого года. Посетителям шоу было предъявлено документальное доказательство в виде двух ЖК-экранов объёмного изображения с диагональю 19 и 22 дюйма. За это время 3D-мониторы от Zalman прошли путь от инженерных образцов до реальных продуктов, отражённых на официальном сайте корейской компании. Обе модели вошли в новую серию Trimon и получили название ZM-M190 и ZM-M220W.

Для полноценной работы ЖК-мониторов в трёхмерном режиме необходимы специальные 3D-очки, которые будут поставляться в комплекте. На данный момент список поддерживаемых видеокарт ограничен продуктами на чипах NVIDIA из серий GeForce 5, 6 и 7. Представители GeForce 8 будут включены в данный список только в следующем году. Что касается видеочипов от объединённой компании AMD, стереодрайверы с их поддержкой пока недоступны. Пользователи Windows Vista также будут разочарованы по той же причине. Стоит также отметить, что ощутить 3D-эффект на новых ЖК-мониторах можно не со всеми играми. На сегодняшний день насчитывается около 40 совместимых 3D-игр, большая часть из которых - чрезвычайно популярные.

Младшая 19-дюймовая модель Zalman ZM-M190 работает с оптимальным разрешением 1280x1024 (SXGA), что соответствует привычному соотношению сторон 5:4. Для старшей широкоформатной модели ZM-M220W с размером экрана 22 дюйма оптимальным является разрешение 1680x1050 (WSXGA+) с соотношением сторон 16:10.

ЖК-матрицы новых дисплеев Zalman характеризуются соотношением контрастности 1000:1, яркостью 300 кд/кв.м (для ZM-M220W указан диапазон 300-400 кд/кв.м), временем отклика 5 мс и способностью воспроизводить около 16,7 млн. цветов. Углы обзора для 2D-режима составляют 160˚ / 160˚, для 3D-режима они гораздо скромнее - 90˚ (по горизонтали) / 10˚~12˚ (по вертикали). Мониторы имеют по одному цифровому видеовходу DVI-D и по одному аналоговому D-Sub. За звуковое сопровождение отвечают стереопары динамиков мощностью по 2 Вт каждый. Обе новинки выполнены в корпусе чёрного цвета.

LG

Компания LG Electronics (LG), один из ведущих мировых производителей бытовой электроники, продемонстрировала первый 3D монитор объемного изображения на базе 42-дюймовой ЖК-панели, обладающей разрешением 1920 х 1080 пикселей, величиной контрастности 1600:1 и временем отклика 8 мс. Первые упоминания о данной модели восходят к сеульской KES 2006, сегодня компания официально представила новую технологию.

Представленная технология визуализации может быть использована для рекламы в местах продаж, в 3D моделировании интерьеров, компьютерном дизайне, компьютерных и видео играх а так же в других развлекательных целях. Объемная картинка формируется без помощи специальных очков или каких-либо дополнительных приспособлений, вне монитора. Эффект объемного изображения достигается за счет нанесения специального покрытия на поверхность монитора и определенного порядка вывода картинки на экран. Глубина 3D изображения составляет 0,5 м, а дистанция для корректного просмотра 3D видео – около 3 метров. Объемная картинка формируется компьютерной программой True3D Player (3D Contents Player), возможна программная обработка в 3DS Max Rendering S/W и конвертере Stereo to True3D.

Официальный представитель компании выразил уверенность, что со временем данная технология позволит заменить информационно – рекламные плазменные и ЖК панели в общественных местах, магазинах, а также в других областях, где требуются большие экраны для подачи аудио-визуальной информации.

SeeReal

Голографические мониторы могут скоро появиться в домах и офисах. Так утверждает немецкая компания SeeReal, разработавшая новую технологию для отображения трехмерных изображений на экране телевизора, компьютерного монитора или посредством проектора. По словам компании, ей удалось преодолеть две основные трудности, которые задерживали распространение голографической технологии – недостаточное разрешение экрана (для того, чтобы иметь возможность смотреть на голографическое изображение под углом 60 градусов, нужно разрешение, превышающее разрешение HDTV в 250 тысяч раз) и слишком большие мощности, которые требуются для обработки данных. Просчет значения каждого пикселя на голографическом дисплее требует гораздо больше мощности, по сравнению с обычным 2D-экраном. Если прибавить к этому то, что общее число пикселов тоже больше, получается, что для просмотра видео в реальном времени нужны чудовищно мощные компьютеры.

SeeReal преодолела обе трудности, создав технологию Tracked Viewing Window. С ее помощью можно уменьшить общее число пикселей до того числа, которое применяется в HDTV, благодаря чему для просмотра голографического 3D-изображения можно будет задействовать обычные потребительские устройства. Кроме этого, благодаря специальной системе распределения нагрузки, на просчет видео в реальном времени требуется намного меньше мощностей.

Пока что в распоряжении SeeReal только прототип устройства, однако компания планирует превратить его в продукт массового потребления уже в ближайшее время.

Заключение

Тема 3D дисплеев очень имеет большие перспективы на современном рынке, поскольку назрела необходимость их применения во многих сферах деятельности человека, начиная от домашнего использования и заканчивая отображением оперативной информации в ситуационных залах, аэропортах, различных силовых структурах.

На сегодняшний день технология отображения 3D объектов имеет значительное количество недостатков, одним из которых является наличие больших вычислительных мощностей, необходимых для плавного и качественного показа объектов и как факт – высокий порог входа для начала использования ввиду новизны описанных выше решений.

Однако, с ростом индустрии, оптимизации технологий производства и постепенным повышением спроса на подобные решения, 3D мониторы будут все чаще встречаться как в корпоративном сегменте – офисах, больницах, государственных учреждениях, так у розничных потребителей. Ведь несмотря на высокую стоимость и сложность изготовления – это качественно новый уровень отображения информации, открывающий новые грани взаимодействия с данными.