Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Реляционные СУБД

Содержание:

Истрия

В 1974 году компания IBM начала исследовательский проект по разработке РСУБД, получивший название System R[5]. Её первым коммерческий продуктом был IBM SQL/DS, выпущенный в 1982 году[6].

Однако первой коммерчески успешной РСУБД стала Oracle, выпущенная в 1979 году компанией Relational Software, которая впоследствии была переименована в Oracle Corporation[7].

В 1970-е годы, когда уже были получены почти все основные теоретические результаты и даже существовали первые прототипы реляционных СУБД, многие авторитетные специалисты отрицали возможность добиться эффективной реализации таких систем. Однако преимущества реляционного подхода и развитие методов и алгоритмов организации и управления реляционными базами данных привели к тому, что к концу 1980-х годов реляционные системы заняли на мировом рынке СУБД доминирующее положение.[8]:37

В связи с резким ростом популярности РСУБД в 1980-х годах многие компании стали позиционировать свои СУБД как «реляционные» в рекламных целях, иногда не имея для этого достаточных оснований, вследствие чего автор реляционной модели данных Эдгар Кодд в 1985 году опубликовал свои знаменитые «12 правил Кодда», которым должна удовлетворять каждая РСУБД.

Реляционная СУБД

Эдгар Франк «Тед» Кодд (англ. Edgar Frank Codd; 23 августа 1923 — 18 апреля 2003) — британский учёный, работы которого заложили основы теории реляционных баз данных.

Работая в компании IBM, он создал реляционную модель данных. Он также внёс существенный вклад в другие области информатики.

Важные события в жизни

Обучался математике и химии в Оксфордском университете (Exeter College).В 1948 переехал в Нью-Йорк, чтобы работать в IBM как математик-программист. В 1953, из-за преследований со стороны сенатора Джозефа Маккарти (Joseph McCarthy), Кодд переехал в Оттаву (Канада). В 1963 он вернулся в США и получил докторскую степень по информатике и вычислительной технике в Университете Мичигана (University of Michigan, Ann Arbor). В 1965 он переехал в Сан-Хосе (Калифорния), чтобы работать в Альмаденском Исследовательском Центре IBM.

В 60-х — 70-х годах он работал над своими теориями хранения данных. В 1970 издал работу «A Relational Model of Data for Large Shared Data Banks», которая считается первой работой по реляционной модели данных.

Кодд продолжил разрабатывать и расширять реляционную модель. Одна из нормальных форм названа в его честь (Нормальная форма Бойса — Кодда).

Подробности

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

  • Каждый элемент таблицы является одним элементом данных
  • Каждый столбец обладает своим уникальным именем
  • Одинаковые строки в таблице отсутствуют
  • Все столбцы в таблице однородные, то есть все элементы в столбце имеют одинаковый тип
  • Порядок следования строк и столбцов может быть произвольным

Реляционные СУБД, ориентированные на реализацию систем операционной обработки данных, менее эффективны в задачах аналитической обработки, чем многомерные базы данных. Это связано, во-первых, с наличием достаточно жестких ограничений накладываемых существующей реализацией языка SQL. Примером такого реально существующего ограничения является предположение о том, что данные в реляционной базе неупорядочены (или более точно, упорядочены случайным образом). При этом их упорядочивание требует дополнительных затрат времени на сортировку при каждом обращении к базе данных. В аналитических системах ввод и выборка данных осуществляется большими порциями. В свою очередь данные, после того как они попадают в базу данных, остаются неизменными в течение длительного периода времени. И здесь более эффективным оказывается хранение данных в форме частично денормализованных таблиц, в которых для увеличения производительности могут храниться не только детализированные, но и предварительно вычисленные агрегированные значения. А для навигации и выборки могут использоваться специализированные, основанные на предположении о малой изменчивости и малоподвижности данных в базе данных, методы адресации и индексации. Такой способ организации данных, иногда называют предвычисленным, подчеркивая тем самым, его отличие от нормализованного реляционного подхода, предполагающего динамическое вычисление различного вида итогов (агрегация) и установление связей между реквизитами из разных таблиц (операции соединения).

Основные недостатки

Помимо невысокой эффективности, о которой было сказано ранее, к недостаткам традиционных реляционных СУБДможно отнести факт того, что в качестве основного и, часто, единственного механизма, обеспечивающего быстрый поиск и выборку отдельных строк таблице (или в связанных через внешние ключи таблицах), обычно используются различные модификации индексов, основанных на B-деревьях. Такое решение оказывается эффективным только при обработке небольших групп записей и высокой интенсивности модификации данных в базах данных.


Реляционные СУБД, возможно, никогда не уйдут со сцены, но дни их господства определенно сочтены, полагает Пол Крил, опубликовавший в сентябре 2011 года статью об этом в InfoWorld. Он цитирует аналитика Робина Блора, который утверждает, что архитектура реляционных СУБД морально устарела, так как была создана еще в прошлую эпоху и не отвечает современным требованиям.

Реляционные СУБД все еще доминируют в системах обработки финансовых транзакций, но сегодня компании все шире применяют СУБД новой архитектуры NoSQL — горизонтально масштабируемые, распределенные и разрабатываемые в открытых кодах. Примеры таких систем — Hadoop, MapReduce и VoltDB. По оценкам аналитиков Forrester, около 75% данных на предприятиях это либо полуструктурированная информация (XML, электронная почта и EDI), либо неструктурированная (текст, изображения, аудио и видео), и лишь 5% от этих данных хранится в реляционных СУБД, а остальное — в базах других типов или в виде файлов, и неподвластно обработке реляционными системами.

По мнению Блора, реляционные СУБД «могут умереть так, что этого никто не заметит» — например, если Oracle в своей СУБД попросту заменит SQL-механизм на NoSQL. Таким механизмом, считает аналитик, могла бы стать одна из существующих сегодня столбцовых СУБД.

Виды связей таблиц

Существует три виды связей таблиц.

Связь с отношением «один-ко-многим». Является наиболее часто используемым типом связи между таблицами. В такой связи каждой записи в таблице A могут соответствовать несколько записей в таблице B, а запись в таблице B не может иметь более одной соответствующей ей записи в таблице A. Например, в одном подразделение может работать несколько сотрудников, но ни один сотрудник не может работать сразу в нескольких подразделениях. Принятое обозначение (1 – ∞).

Отношение «многие-ко-многим». При этом отношении одной записи в таблице A могут соответствовать несколько записей в таблице B, а одной записи в таблице B несколько записей в таблице A. Такая схема реализуется только с помощью третьей (связующей) таблицы, ключ которой состоит по крайней мере из двух полей, которые являются полями внешнего ключа в таблицах A и B. Например, между таблицами инспекторов и лиц, пересекающих границу, связь определяется отношением «многие-ко-многим». Один декларант может обсуживаться у нескольких инспекторов, в то же время инспектор может обслуживать несколько лиц. Такая связь определяется путем создания двух связей с отношением «один-ко-многим» для таблицы Инспектор_Декларант, в которой обязательно должны быть поля КлючИнспектора и КлючДекларанта.

При отношении «один-к-одному» запись в таблице A может иметь не более одной связанной записи в таблице B и наоборот. Этот тип связи используют не очень часто, поскольку такие данные могут быть помещены в одну таблицу. Связь с отношением «один-к-одному» используют для разделения очень широких таблиц или для отделения части таблицы по соображениям защиты.

Популярные СУБД

  • SQLite: очень мощная встраиваемая РСУБД.
  • MySQL: самая популярная и часто используемая РСУБД.
  • PostgreSQL: самая продвинутая и гибкая РСУБД.

SQLite

SQLite — это изумительная библиотека, встраиваемая в приложение, которое её использует. Будучи файловой БД, она предоставляет отличный набор инструментов для более простой (в сравнении с серверными БД) обработки любых видов данных.

Когда приложение использует SQLite, их связь производится с помощью функциональных и прямых вызовов файлов, содержащих данные (например, баз данных SQLite), а не какого-то интерфейса, что повышает скорость и производительность операций.

Поддерживаемые типы данных

  • NULL: NULL-значение.
  • INTEGER: целое со знаком, хранящееся в 1, 2, 3, 4, 6, или 8 байтах.
  • REAL: число с плавающей запятой, хранящееся в 8-байтовом формате IEEE.
  • TEXT: текстовая строка с кодировкойUTF-8, UTF-16BE или UTF-16LE.
  • BLOB: тип данных, хранящийся точно в таком же виде, в каком и был получен.

Note: для получения более подробной информации ознакомьтесь с документацией.

Преимущества

  • Файловая: вся база данных хранится в одном файле, что облегчает перемещение.
  • Стандартизированная: SQLite использует SQL; некоторые функции опущены (RIGHT OUTER JOIN или FOR EACH STATEMENT), однако, есть и некоторые новые.
  • Отлично подходит для разработки и даже тестирования: во время этапа разработки большинству требуется масштабируемое решение. SQLite, со своим богатым набором функций, может предоставить более чем достаточный функционал, при этом будучи достаточно простой для работы с одним файлом и связанной сишной библиотекой.

Недостатки

  • Отсутствие пользовательского управления: продвинутые БД предоставляют пользователям возможность управлять связями в таблицах в соответствии с привилегиями, но у SQLite такой функции нет.
  • Невозможность дополнительной настройки: опять-таки, SQLite нельзя сделать более производительной, поковырявшись в настройках — так уж она устроена.

Когда стоит использовать SQLite

  • Встроенные приложения: все портируемые не предназначенные для масштабирования приложения — например, локальные однопользовательские приложения, мобильные приложения или игры.
  • Система доступа к дисковой памяти: в большинстве случаев приложения, часто производящие прямые операции чтения/записи на диск, можно перевести на SQLite для повышения производительности.
  • Тестирование: отлично подойдёт для большинства приложений, частью функционала которых является тестирование бизнес-логики.

Когда не стоит использовать SQLite

  • Многопользовательские приложения: если вы работаете над приложением, доступом к БД в котором будут одновременно пользоваться несколько человек, лучше выбрать полнофункциональную РСУБД — например, MySQL.
  • Приложения, записывающие большие объёмы данных: одним из ограничений SQLite являются операции записи. Эта РСУБД допускает единовременное исполнение лишь одной операции записи.

MySQL

MySQL — это самая популярная из всех крупных серверных БД. Разобраться в ней очень просто, да и в сети о ней можно найти большое количество информации. Хотя MySQL и не пытается полностью реализовать SQL-стандарты, она предлагает широкий функционал. Приложения общаются с базой данных через процесс-демон.

Поддерживаемые типы данных

  • TINYINT: очень маленькое целое.
  • SMALLINT: маленькое целое.
  • MEDIUMINT: целое среднего размера.
  • INT или INTEGER: целое нормального размера.
  • BIGINT: большое целое.
  • FLOAT: знаковое число с плавающей запятой одинарной точности.
  • DOUBLE, DOUBLE PRECISION, REAL: знаковое число с плавающей запятой двойной точности.
  • DECIMAL, NUMERIC: знаковое число с плавающей запятой.
  • DATE: дата.
  • DATETIME: комбинация даты и времени.
  • TIMESTAMP: отметка времени.
  • TIME: время.
  • YEAR: год в формате YY или YYYY.
  • CHAR: строка фиксированного размера, дополняемая справа пробелами до максимальной длины.
  • VARCHAR: строка переменной длины.
  • TINYBLOB, TINYTEXT: BLOB- или TEXT-столбец длиной максимум 255 (2^8 — 1) символов.
  • BLOB, TEXT: BLOB- или TEXT-столбец длиной максимум 65535 (2^16 — 1) символов.
  • MEDIUMBLOB, MEDIUMTEXT: BLOB- или TEXT-столбец длиной максимум 16777215 (2^24 — 1) символов.
  • LONGBLOB, LONGTEXT: BLOB- или TEXT-столбец длиной максимум 4294967295 (2^32 — 1) символов.
  • ENUM: перечисление.
  • SET: множества.

Преимущества

  • Простота: MySQL легко устанавливается. Существует много сторонних инструментов, включая визуальные, облегчающих начало работы с БД.
  • Много функций: MySQL поддерживает большую часть функционала SQL.
  • Безопасность: в MySQL встроено много функций безопасности.
  • Мощность и масштабируемость: MySQL может работать с действительно большими объёмами данных, и неплохо походит для масштабируемых приложений.
  • Скорость: пренебрежение некоторыми стандартами позволяет MySQL работать производительнее, местами срезая на поворотах.

Недостатки

  • Известные ограничения: по определению, MySQL не может сделать всё, что угодно, и в ней присутствуют определённые ограничения функциональности.
  • Вопросы надёжности: некоторые операции реализованы менее надёжно, чем в других РСУБД.
  • Застой в разработке: хотя MySQL и является open-source продуктом, работа над ней сильно заторможена. Тем не менее, существует несколько БД, полностью основанных на MySQL (например, MariaDB). Кстати, подробнее о родстве MariaDB и MySQL можно из нашего интервью с создателем обеих РСУБД — Джеймсом Боттомли.

Когда стоит использовать MySQL

  • Распределённые операции: когда вам нужен функционал бо́льший, чем может предоставить SQLite, стоит использовать MySQL.
  • Высокая безопасность: функции безопасности MySQL предоставляют надёжную защиту доступа и использования данных.
  • Веб-сайты и приложения: большая часть веб-ресурсов вполне может работать с MySQL, несмотря на ограничения. Этот инструмент весьма гибок и прост в обращении, что только на руку в длительной перспективе.
  • Кастомные решения: если вы работаете над очень специфичным продуктом, MySQL подстроится под ваши потребности благодаря широкому спектру настроек и режимов работы.

Когда не стоит использовать MySQL

  • SQL-совместимость: поскольку MySQL не пытается полностью реализовать стандарты SQL, она не является полностью совместимой с SQL. Из-за этого могут возникнуть проблемы при интеграции с другими РСУБД.
  • Конкурентность: хотя MySQL неплохо справляется с операциями чтения, одновременные операции чтения-записи могут вызвать проблемы.
  • Недостаток функций: в зависимости от выбора движка MySQL может недоставать некоторых функций.

PostgreSQL

PostgreSQL — это самая продвинутая РСУБД, ориентирующаяся в первую очередь на полное соответствие стандартам и расширяемость. PostgreSQL, или Postgres, пытается полностью соответствовать SQL-стандартам ANSI/ISO.

PostgreSQL отличается от других РСУБД тем, что обладает объектно-ориентированным функционалом, в том числе полной поддержкой концепта ACID (Atomicity, Consistency, Isolation, Durability).

Будучи основанным на мощной технологии Postgres отлично справляется с одновременной обработкой нескольких заданий. Поддержка конкурентности реализована с использованием MVCC (Multiversion Concurrency Control), что также обеспечивает совместимость с ACID.

Хотя эта РСУБД не так популярна, как MySQL, существует много сторонних инструментов и библиотек для облегчения работы с PostgreSQL.

Поддерживаемые типы данных

  • bigint: знаковое 8-байтное целое.
  • bigserial: автоматически инкрементируемое 8-битное целое.
  • bit [(n)]: битовая строка фиксированной длины.
  • bit varying [(n)]: битовая строка переменной длины.
  • boolean: булевская величина.
  • box: прямоугольник на плоскости.
  • bytea: бинарные данные.
  • character varying [(n)]: строка символов фиксированной длины.
  • character [(n)]: строка символов переменной длины.
  • cidr: сетевой адрес IPv4 или IPv6.
  • circle: круг на плоскости.
  • date: календарная дата.
  • double precision: число с плавающей запятой двойной точности.
  • inet: адрес хоста IPv4 или IPv6.
  • integer: знаковое 4-байтное целое.
  • interval [fields] [(p)]: временной промежуток.
  • line: бесконечная прямая на плоскости.
  • lseg: отрезок на плоскости.
  • macaddr: MAC-адрес.
  • money: денежная величина.
  • path: геометрический путь на плоскости.
  • point: геометрическая точка на плоскости.
  • polygon: многоугольник на плоскости.
  • real: число с плавающей запятой одинарной точности.
  • smallint: знаковое 2-байтное целое.
  • serial: автоматически инкрементируемое 4-битное целое.
  • text: строка символов переменной длины.
  • time [(p)] [without time zone]: время суток (без часового пояса).
  • time [(p)] with time zone: время суток (с часовым поясом).
  • timestamp [(p)] [without time zone]: дата и время (без часового пояса).
  • timestamp [(p)] with time zone: дата и время (с часовым поясом).
  • tsquery: запрос текстового поиска.
  • tsvector: документ текстового поиска.
  • txid_snapshot: снэпшот ID пользовательской транзакции.
  • uuid: уникальный идентификатор.
  • xml: XML-данные.

Преимущества

  • Полная SQL-совместимость.
  • Сообщество: PostgreSQL поддерживается опытным сообществом 24/7.
  • Поддержка сторонними организациями: несмотря на очень продвинутые функции, PostgreSQL используется в многих инструментах, связанных с РСУБД.
  • Расширяемость: PostgreSQL можно программно расширить за счёт хранимых процедур.
  • Объектно-ориентированность: PostgreSQL — не только реляционная, но и объектно-ориентированная СУБД.

Недостатки

  • Производительность: В простых операциях чтения PostgreSQL может уступать своим соперникам.
  • Популярность: из-за своей сложности инструмент не очень популярен.
  • Хостинг: из-за вышеперечисленных факторов проблематично найти подходящего провайдера.

Когда стоит использовать PostgreSQL

  • Целостность данных: если приоритет стоит на надёжность и целостность данных, PostgreSQL — лучший выбор.
  • Сложные процедуры: если ваша БД должна выполнять сложные процедуры, стоит выбрать PostgreSQL в силу её расширяемости.
  • Интеграция: если в будущем вам предстоит перемещать всю базу на другое решение, меньше всего проблем возникнет с PostgreSQL.

Когда не стоит использовать PostgreSQL

  • Скорость: если всё, что нужно — это быстрые операции чтения, не стоит использовать PostgreSQL.
  • Простые ситуации: если вам не требуется повышенная надёжность, поддержка ACID и всё такое, использование PostgreSQL — это стрельба из пушки по мухам.

Источники

1 https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%A1%D0%A3%D0%91%D0%94

2 http://www.tadviser.ru/index.php/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%A0%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%A1%D0%A3%D0%91%D0%94

3 https://studfiles.net/preview/2893940/page:8/

4,https://tproger.ru/translations/sqlite-mysql-postgresql-comparison/