Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Типы ЭВМ по принципу действия (классификация ЭВМ)

Содержание:

Введение

Глава 1. Классификация ЭВМ

  1. Классификация ЭВМ по принципу действия

Электронная вычислительная машина, компьютер — комплекс техни­ческих средств, предназначенных для автоматической обработки информа­ции в процессе решения вычислительных и информационных задач. По принципу действия вычислительные машины делятся на три больших класса (рис. 5.1): аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).


Цифровые вычислительные машины (ЦВМ) — вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.

Аналоговые вычислительные машины (АВМ) — вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения) Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5 %). На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.

  Гибридные вычислительные машины (ГВМ) — вычислительные маши­ны комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управ­ления сложными быстродействующими техническими комплексами.

В современной вычислительной технике (ВТ) основой представления информации являются электрические сигналы, допускающие в случае использования напряжений постоянного тока две формы — аналоговую и дискретную.

В первом случае величина напряжения является аналогом значения некоторой измеряемой переменной; например, подача на вход напряжения в 1,942 В эквивалентна вводу числа 19,42 (при масштабе 0,1). Во втором случае — в виде нескольких различных напряжений, эквивалентных числу единиц в представляемом значении переменной. При аналоговом представлении информации измеряемые величины заданного диапазона могут принимать любые допустимые значения плавно, без разрывов переходя от одного к другому (теоретически представляется весь спектр значений измеряемой величины на заданном отрезке). Таким образом, аналоговые ВМ (АВМ) — это вычислительные машины непрерывного действия, которые работают с информацией, представленной в непрерывной (аналоговой) форме, т. е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).

  1. Классификация ЭВМ ПО этапам создания

По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

1-е поколение, 50-е гг.: ЭВМ на электронных вакуумных лампах; ЭВМ ENIAC, аббревиатура от Electronic Numerical Integrator and Computer, электронный цифровой интегратор и вычислитель), была запущена в 1946 году и весила почти 30 тонн.

2-е поколение, 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);

3-е поколение, 70-е гг.: ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни – тысячи транзисторов в одном корпусе). Интегральная схема – электронная схема специального назначе­ния, выполненная в виде единого полупроводникового кристалла, объединяю­щего большое число диодов и транзисторов;

4-е поколение, 80-е гг.: ЭВМ на больших и сверхбольших интегральных схе­мах — микропроцессорах (десятки тысяч – миллионы транзисторов в одном кристалле);

5-е поколение, 90-е гг.: ЭВМ со многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

6-е и последующие поколения: оптоэлектронные ЭВМ с массовым парал­лелизмом и нейронной структурой – с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологичес­ких систем.

Каждое следующее поколение ЭВМ имеет по сравнению с предшествующим сущест­венно лучшие параметры. Так, производительность ЭВМ и емкость всех запоминаю­щих устройств увеличиваются, как правило, больше чем на порядок.

  1. Классификация ЭВМ по назначению

Классификация по назначению — один из наиболее ранних методов классификации. Он связан с тем, как компьютер применяется. По этому принципу различают большие ЭВМ (электронно-вычислительные машины), мини-ЭВМ, микро-ЭВМ и персональные компьютеры, которые, в свою очередь, подразделяют на массовые, деловые, портативные, развлекательные и рабочие станции.

Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Характерными чертами универсальных ЭВМ являются:

  • высокая производительность;
  • разнообразие форм обрабатываемых данных: двоичных, десятичных, символьных, при большом диапазоне их изменения и высокой точности их представления;
  • обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных;
  • большая емкость оперативной памяти;
  • развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств.

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных видов задач: научных, инженерно-технических, экономических, информационных, управленческих и других задач. В качестве универсальных ЭВМ используются различные типы компьютеров, начиная от супер-ЭВМ и кончая персональными ЭВМ. Решаемые на этих компьютерах задачи отличаются сложностью алгоритмов и объемами обрабатываемых данных. Причем одни универсальные ЭВМ могут работать в многопользовательском режиме (в вычислительных центрах коллективного пользования, в локальных компьютерных сетях и т.д.), другие - в однопользовательском режиме.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам. На проблемно-ориентированных ЭВМ, в частности, создаются всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения еще более узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, во многих случаях существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

  1. Классификация ЭВМ по размерам и функциональным возможностям

Классификация ЭВМ по размерам и функциональным возможностям По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микро ЭВМ). Первая большая ЭВМ ЭНИАК (Electronic Numerical Integrator and Computer) была создана в 1946 г. (в 1996 г. отмечалось 50-летие создания первой ЭВМ).

По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие, большие, малые, сверхмалые (микроЭВМ).

Функциональные возможности ЭВМ обусловливают важнейшие технико-эксплуатационные характеристики:

быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;

разрядность и формы представления чисел, с которыми оперирует ЭВМ;

номенклатура, емкость и быстродействие всех запоминающих устройств;

номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;

типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутримашинного интерфейса);

способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);

типы и технико-эксплутационные характеристики операционных систем, используемых в машине;

наличие и функциональные возможности программного обеспечения;

способность выполнять программы, написанные для других типов  ЭВМ  (программная совместимость с другими типами  ЭВМ );

система и структура машинных команд;

возможность подключения к каналам связи и к вычислительной сети;

эксплуатационная надежность  ЭВМ ;

коэффициент полезного использования  ЭВМ  во времени, определяемый соотношением времени полезной работы и времени профилактики.

Большие ЭВМ отличаются высокой стоимостью оборудования и обслуживания, поэтому работа таких суперкомпьютеров организована по непрерывному циклу. Наиболее трудоемкие и продолжительные вычисления планируют на ночные часы, когда количество обслуживающего персонала минимально. В дневное время ЭВМ исполняет менее трудоемкие, но более многочисленные задачи. При этом для повышения эффективности компьютер работает одновременно с несколькими задачами и, соответственно, с несколькими пользователями. Он поочередно переключается с одной задачи на другую и делает это настолько быстро и часто, что у каждого пользователя создается впечатление, будто компьютер работает только с ним. Такое распределение ресурсов вычислительной системы носит название принципа разделения времени.

 Мини-ЭВМ – от больших ЭВМ компьютеры этой группы отличаются уменьшенными размерами и, соответственно, меньшей производительностью и стоимостью. Такие компьютеры используются крупными предприятиями, научными учреждениями, банками и некоторыми высшими учебными заведениями, сочетающими учебную деятельность с научной.

Микро-ЭВМ – компьютеры данного класса доступны многим предприятиям. Организации, использующие микро-ЭВМ, обычно не создают вычислительные центры. Для обслуживания такого компьютера им достаточно небольшой вычислительной лаборатории в составе нескольких-человек. В число сотрудников вычислительной лаборатории обязательно входят программисты, хотя напрямую разработкой программ они не занимаются. Необходимые системные программы обычно покупают вместе с компьютером, а разработку нужных прикладных программ заказывают более крупным вычислительным центрам или специализированным организациям.

Персональные компьютеры (ПК) – однопользовательские микроЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения.

Персональные компьютеры (ПК) – эта категория компьютеров получила особо бурное развитие в течение последних двадцати лет. Из названия видно, что такой компьютер предназначен для обслуживания одного рабочего места. Как правило, с персональным компьютером работает один человек. Несмотря на свои небольшие размеры и относительно невысокую стоимость, современные персональные компьютеры обладают немалой производительностью. Многие современные персональные модели превосходят большие ЭВМ 70-х годов, мини-ЭВМ 80-х годов и микро-ЭВМ первой половины 90-х годов. Персональный компьютер (Personal Computer, РС) вполне способен удовлетворить большинство потребностей малых предприятий и отдельных лиц.

Персональный компьютер для удовлетворения требованиям общедоступности и универсальности должен иметь следующие характеристики:

· малую стоимость, находящуюся в пределах доступности для индивидуального покупателя;

· автономность эксплуатации без специальных требований к условиям окружающей среды;

· гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;

· «дружественность» операционной системы и прочего программного обеспечения, обусловливающую возможность работы с ней пользователя без специальной профессиональной подготовки;

· высокую надежность работы (более 5000 ч наработки на отказ).

Списки литературы

    1. Poisk-ru.ru
    2. Studfile.net
    3. Studopedia.ru