Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9

По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 Теория вероятностей
По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 Решение задачи
По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9
По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 Выполнен, номер заказа №16412
По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 Прошла проверку преподавателем МГУ
По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9 По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9  225 руб. 

По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9

Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл!

По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9

Закажите у меня новую работу, просто написав мне в чат!

Описание заказа и 38% решения ( + фото):

По выборке двухмерной случайной величины: - вычислить точечную оценку коэффициента корреляции; - вычислить интервальную оценку коэффициента корреляции (γ = 0,95); - проверить гипотезу об отсутствии корреляционной зависимости; - вычислить оценки параметров 𝑎0 и 𝑎1 линии регрессии 𝑦̅(𝑥) = 𝑎̂0 + 𝑎̂1𝑥 ; - построить диаграмму рассеивания и линию регрессии. Двумерная выборка: ( 5.97; 15.17) ( 9.22; 8.06) ( 11.03; 13.89) (5.17; 14.61) (8.34; 11.14) ( 12.96; 10.30) ( 5.07; 8.09) ( 9.83; 11.94) ( 8.42; 7.45) ( 10.48; 11.90) ( 8.27; 13.06) ( 7.04; 13.20) ( 8.69; 14.72) (8.58; 11.73) (3.55; 11.17) ( 3.46; 8.42) (8.79; 11.52) (7.39; 14.59) ( 9.75; 12.71) ( 3.17; 8.32) (7.56; 21.65) (4.18; 6.01) ( 6.38; 9.62) (1.87; 12.51) (6.14; 3.50) ( 13.15; 14.01) ( 11.63; 13.11) (7.58; 11.43) (1.47; 2.06) ( 4.13; 16.45) (7.76; 10.57) ( 18.30; 13.31) ( 10.12; 2.41)( 10.42; 7.24) ( 3.42; 6.02) ( 3.77; 5.48) ( 14.29; 18.17) (10.44; 7.54) (2.40; 8.46) (13.32; 14.47) ( 12.66; 14.34) ( 11.38; 8.20) (7.42; 6.83) (3.39; 12.48) ( 7.96; 7.83) (7.66; 11.06) (10.31; 14.37) ( 17.47; 12.83) ( 9.89; 8.40) (3.88; 4.99)

Решение

Оценки математических ожиданий по каждой переменной:  Оценки дисперсий по каждой переменной:  Оценка корреляционного момента:  Точечная оценка коэффициент корреляции:  Вычислим интервальную оценку коэффициента корреляции с надежностью. Для этого в таблице функции Лапласа найдем значение, равное  и определим значение аргумента, ему соответствующее. Вычислим вспомогательные значения Таким образом, доверительный интервал для коэффициента корреляции имеет вид  Проверим гипотезу об отсутствии корреляционной зависимости. Так как объем выборки велик, то вычислим значение критерия по формуле:  Определим значение 𝑍𝛼 из таблицы функции Лапласа:  Так как, то гипотеза 𝐻0 принимается, т.е. величины 𝑋 и 𝑌 не коррелированы. Параметры линии регрессии определим по формулам: Уравнение регрессии имеет вид:  Построим диаграмму рассеивания и линию регрессии: