Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Электрические цепи с распределенными параметрами

Содержание:

Электрические цепи с распределенными параметрами:

Каждый элемент электрической цепи (резистор, катушка, конденсатор) имеет конечные размеры, и его можно представить как совокупность малых однородных частей, в которых совершаются интересующие нас электромагнитные процессы — преобразование энергии в тепло, накопление энергии в магнитном и электрическом полях. Иначе говоря, все устройства имеют распределенные параметры — сопротивление, индуктивность, емкость.
При изучении электрических цепей до сих пор мы не учитывали размеры устройств, предполагая, что параметры R, L, C сосредоточены, т. е. представляли в расчетной схеме каждый элемент в целом.

Такой подход к анализу электрических цепей принимают тогда, когда рассматривают и изучают внешние связи между элементами. В тех случаях, когда требуется выявить соотношения внутри устройства, соответствующий элемент рассматривается как объект с распределенными параметрами. Таким объектом может быть обмотка электрической машины, трансформатора, антенна радиотехнического устройства и др.

Электрическая цепь с распределенными параметрами

Электрическая цепь с распределенными параметрами — это цепь, в которой сопротивления, проводимости, индуктивности и емкости распределены вдоль цепи.

Наглядным примером цепи с распределенными параметрами является электрическая длинная линия.

Уравнения длинной линии

Длинные линии строят для передачи электрической энергии, для электросвязи (передачи информации). Их рассматривают как объекты с распределенными параметрами при низких частотах и длине в десятки и сотни километров.
В радиотехнике при высоких частотах распределение параметров по длине учитывают в более коротких участках проводов (единицы и доли метра), например в антеннах.

Схемы замещения длинных линий

На рис. 26.1 изображена схема электрической цепи, состоящей из источника и приемника электрической энергии, связанных двухпроводной линией. Эту цепь можно рассматривать неразветвленной, с одинаковым током во всех ее элементах, если не учитывать двух обстоятельств: скорость распространения электромагнитных возмущений конечна; имеются токи, обусловленные емкостью между проводами (емкостный ток) и проводимостью изоляции (ток утечки через изоляцию).

Электрические цепи с распределенными параметрами

В данном случае первое обстоятельство можно не учитывать, так как скорость распространения электромагнитных возмущений действительно велика (в вакууме равна скорости света). Емкостные токи и токи утечки пропорциональны напряжению между проводами; кроме того, емкостный ток увеличивается с ростом частоты, так как уменьшается емкостное сопротивление. Поэтому при высоком напряжении или большой частоте, а также при большой длине линии емкостные токи и токи утечки становятся значительными по величине и их нельзя исключить из расчета.
Токи между проводами существуют на сколь угодно малом отрезке линии, поэтому ток в проводах уменьшается по мере удаления от начала линии.
Вдоль линии напряжение между проводами тоже неодинаково. Оно уменьшается в направлении от начала к концу линии, так как растет падение напряжения, обусловленное активным и индуктивным сопротивлениями проводов.

Электрические цепи с распределенными параметрами

Для расчета можно составить схему замещения линии, изображенную на рис. 26.2. На схеме замещения бесконечно малый участок двухпроводной линии длиной dx представлен ячейкой с активным сопротивлением R0dx прямого и обратного проводов, индуктивностью L0dx, проводимостью G0dx и емкостью C0dx между проводами. Вся линия изображается электрической схемой последовательного соединения таких ячеек. Активное сопротивление, индуктивность, проводимость и емкость считают равномерно распределенными вдоль линии, а R0, L0, G0, C0 — величины этих параметров на единицу длины.

Электрические цепи с распределенными параметрами
Рис. 26.3. Схема замещения однородной линии без потерь

Линия с равномерным распределением параметров называется однородной. Реальные линии можно считать однородными лишь приближенно, так как параметры их все же распределены неравномерно. Например, проводимость воздушной линии сосредоточена в основном на опорах, а благодаря провесу проводов емкость по отношению к земле вдоль пролета неодинакова.
В зависимости от целей и требуемой точности расчета можно учитывать все четыре параметра или некоторые из них. Так, при рассмотрении линии электропередачи с напряжением до 35 кВ и при частоте 50 Гц часто не учитывают емкостные токи и токи утечки, т. е. считают равными нулю параметры C0 и G0.

При высокой частоте (например, в радиотехнических устройствах) или при коротких импульсах напряжения в линиях, возникающих от грозовых разрядов, емкостные токи между проводами могут быть сравнительно большими и ими пренебрегать нельзя.

Вместе с тем при высокой частоте и малой длине линии в отдельных случаях можно пренебречь активным сопротивлением R0 и проводимостью G0.
При таком упрощении получается линия без потерь, схема замещения которой показана на рис. 26.3.

Основные уравнения длинной линии

При синусоидальном напряжении источника питания напряжение и ток в линии на любом расстоянии x от ее начала изменяются во времени. Вместе с тем напряжение и ток изменяются вдоль линии. Установившийся режим в длинной линии представляется довольно сложной пространственно-временной картиной, для изучения которой необходимо получить аналитическую зависимость напряжения и тока от двух независимых переменных — времени и расстояния.

Решить такую задачу можно, используя схему замещения однородной линии (см. рис. 26.2). На схеме кроме параметров некоторого элемента длины линии dx обозначены напряжение и ток в начале и конце этого элемента, расположенного на расстоянии x от начала линии.
Падение напряжения в элементе длины dx линии
Электрические цепи с распределенными параметрами
Разность токов в начале и конце того же элемента равна сумме тока утечки и емкостного тока:
Электрические цепи с распределенными параметрами
Из этих выражений получают дифференциальные уравнения однородной линии, в которые входят комплексы токов и напряжений, изменяющихся во времени по синусоидальному закону, а также их производные по переменной координате х:
Электрические цепи с распределенными параметрами
где Электрические цепи с распределенными параметрами — полное сопротивление единицы длины линии (определяется продольными параметрами линии); Электрические цепи с распределенными параметрами — полная проводимость единицы длины линии (определяется поперечными параметрами линии).
Продольные R0, L0 и поперечные G0, C0 параметры линии характеризуют совершенно различные физические явления, поэтому между собой не связаны.
Далее можно составить уравнения, в которых переменными будут напряжение или ток. Для этого продифференцируем по х уравнения (26.1):
Электрические цепи с распределенными параметрами
учитывая выражения (26.1), получим линейные дифференциальные уравнения второго порядка с постоянными коэффициентами:
Электрические цепи с распределенными параметрами
Решением первого уравнения из (26.2) является выражение
Электрические цепи с распределенными параметрами
Уравнение тока получим из (26.1) и (26.3):
Электрические цепи с распределенными параметрами

Характеристики длинной линии

В выражениях (26.3) и (26.4) Электрические цепи с распределенными параметрами и Электрические цепи с распределенными параметрами — постоянные коэффициенты, определяемые условиями в начале или конце линии; Электрические цепи с распределенными параметрами — коэффициент распространения электромагнитной волны по линии (коэффициенты выражаются комплексными числами):
Электрические цепи с распределенными параметрами
Учитывая формулу (26.5), запишем другое уравнение тока:
Электрические цепи с распределенными параметрами
или
Электрические цепи с распределенными параметрами
где величина
Электрические цепи с распределенными параметрами
имеет размерность сопротивления и называется волновым сопротивлением линии.
Постоянные коэффициенты Электрические цепи с распределенными параметрами и Электрические цепи с распределенными параметрами нетрудно найти, если известен режим в начале линии, т.е. даны Электрические цепи с распределенными параметрами и Электрические цепи с распределенными параметрами.
Из уравнений (26.3) и (26.6) при x = 0
Электрические цепи с распределенными параметрами
Отсюда
Электрические цепи с распределенными параметрами
Отношение комплекса напряжения к комплексу тока в начале линии называется входным сопротивлением линии.
Входное сопротивление линии при нагрузке Электрические цепи с распределенными параметрами можно определить через входные сопротивления при холостом ходе Электрические цепи с распределенными параметрами и коротком замыкании Электрические цепи с распределенными параметрами:
Электрические цепи с распределенными параметрами
Коэффициент распространения электромагнитной волны Электрические цепи с распределенными параметрами  как комплексную величину, можно представить в алгебраической форме
Электрические цепи с распределенными параметрами
Этот коэффициент, имея два слагаемых, характеризует две стороны электромагнитного процесса в линии: затухание амплитуд и изменение фазы напряжения и тока в зависимости от расстояния от начала линии.
В соответствии с этим действительная часть комплекса δ называется коэффициентом затухания, а мнимая часть β — коэффициентом фазы.
Коэффициент затухания δ показывает степень затухания амплитуды колебаний при распространении волны на единицу длины.

Электрические цепи с распределенными параметрами
Рис. 26.4. График распределения напряжения вдоль линии

На рис. 26.4 показан график распределения напряжения вдоль линии в некоторый фиксированный момент времени. Из графика видно, что напряжение вдоль линии распределено по периодическому закону, а амплитуды напряжения затухают по экспоненциальному закону в направлении от начала к концу линии.

Задача 26.1.

Трехфазная линия электропередачи длиной l = 900 км имеет первичные параметры: R0 = 0,08 Ом/км; Z0 = 1,336 • 10-3 Гн/км; С0 = 8,6 x 10-9 Ф/км; G0 = 3,75 • 10-8 См/км.
Нагрузка в конце линии Р2 = 300 МВт; U2 = 380 кВ; соsφ2 = 1; частота f = 50 Гц.
Определить вторичные параметры линии (Zc, γ), напряжение и ток на ее входе.
План решения:
1.    Комплексы «продольного» сопротивления и «поперечной» проводимости [см. формулы (26.1)].
2.    Волновое сопротивление линии — по формуле (26.7).
3.    Коэффициент распространения — по формуле (26.5).
4.    Коэффициент затухания и коэффициент фазы — по формуле
Электрические цепи с распределенными параметрами
5.    Ток в конце линии — по формуле (20.9).
6.    Напряжение и ток в начале линии — по формулам (26.3) и (26.6), которые следует записать при условии, что расстояния вдоль линии отсчитываются от конца линии:
Электрические цепи с распределенными параметрами
Электрические цепи с распределенными параметрами
При этом
Электрические цепи с распределенными параметрами
Коэффициенты Электрические цепи с распределенными параметрами и Электрические цепи с распределенными параметрами определяют по формулам (26.8) при замене величин напряжения и тока в начале линии этими величинами в конце линии:
Электрические цепи с распределенными параметрами  Электрические цепи с распределенными параметрами
Выполнить вычисления по данному плану.

Установившийся режим в длинной линии без потерь

Линия без потерь, как уже было отмечено, не имеет активных сопротивления R0 и проводимости Электрические цепи с распределенными параметрами

В радиотехнике длинные линии с малыми потерями встречаются часто, поэтому рассмотрение линии при R0 = 0 и G0 = 0 имеет практическое значение.

Уравнения длинной линии без потерь

Согласно формулам (26.5) и (26.9), для линии без потерь коэффициент затухания Электрические цепи с распределенными параметрами а коэффициент распространения волны оказывается равным коэффициенту фазы:
Электрические цепи с распределенными параметрами  Электрические цепи с распределенными параметрами
Поэтому график распределения напряжения вдоль линии в некоторый фиксированный момент времени представляет собой синусоиду. Амплитуда напряжения вдоль линии остается постоянной (рис. 26.5). Волновое сопротивление [см. формулу (26.7)]
Электрические цепи с распределенными параметрами
Уравнения напряжения и тока в линии без потерь, согласно уравнениям (26.3), (26.6),
Электрические цепи с распределенными параметрами
Вместо коэффициента Электрические цепи с распределенными параметрами и Электрические цепи с распределенными параметрами подставим их значения из (26.8), определенные по известным величинам напряжения U1 и тока I1 в начале линии Электрические цепи с распределенными параметрами Кроме того, сделаем замену:
Электрические цепи с распределенными параметрами
Электрические цепи с распределенными параметрами
После преобразования из уравнений (26.11) получим
Электрические цепи с распределенными параметрами

Электрические цепи с распределенными параметрами
Рис. 26.5. Распределение волны напряжения вдоль линии без потерь

Из этих уравнений можно также получить выражения напряжения и тока в любой точке линии, если известны напряжение U2 и ток I2 в конце линии, при условии отсчета расстояния от конца линии:
Электрические цепи с распределенными параметрами
С помощью уравнений (26.12) и (26.13) можно исследовать различные режимы длинной линии без потерь.

Холостой ход

При холостом ходе линии (I2 = 0)
Электрические цепи с распределенными параметрами
Напряжение и ток вдоль линии в любой момент времени распределены по синусоидальному закону, причем в пунктах, где напряжение равно нулю, ток имеет наибольшую величину, а в пунктах с наибольшим напряжением ток равен нулю (рис. 26.6, а, б).

Точки линии, в которых напряжение или ток равны нулю, называются узлами, а точки с наибольшей величиной напряжения или тока — пучностями.
Таким образом, узлы напряжения по месту расположения на линии совпадают с пучностями тока, а пучности напряжения — с узлами тока.
Положение узлов напряжения и пучностей тока найдем, приравняв нулю напряжение в первом уравнении (26.14): U = 0 при Электрические цепи с распределенными параметрами, где k — любое целое число или нуль, т. е. при Электрические цепи с распределенными параметрами Электрические цепи с распределенными параметрами Электрические цепи с распределенными параметрами и т.д.

Электрические цепи с распределенными параметрами
Рис. 26.6. Графики напряжения и тока стоячей электромагнитной волны в длинной линии без потерь

Положение на линии узлов тока и пучностей напряжения определяется из второго уравнения (26.14) при I = 0.
Напряжение и ток, распределяясь вдоль линии по синусоидальному закону без затухания, по такому же закону изменяются во времени.

Короткое замыкание

Аналогичная картина наблюдается и при коротком замыкании конца линии без потерь. Отличие электромагнитных процессов в линии без потерь в режимах холостого хода и короткого замыкания состоит лишь в том, что изменяется расположение пучностей и узлов напряжения и тока по длине линии: в тех пунктах, где при холостом ходе находятся пучности напряжения и узлы тока, при коротком замыкании обнаруживаются пучности тока и узлы напряжения. В частности, в конце разомкнутой линии имеется пучность напряжения и узел тока Электрические цепи с распределенными параметрами а в конце короткозамкнутой линии имеется пучность тока и узел напряжения ,Электрические цепи с распределенными параметрами

Стоячая волна

Пусть вектор напряжения в конце разомкнутой линии направлен по действительной оси комплексной плоскости, т. е. начальная временная фаза напряжения равна нулю:
Электрические цепи с распределенными параметрами или Электрические цепи с распределенными параметрами
В этом случае мгновенные значения напряжения и тока в линии можно выразить уравнениями
Электрические цепи с распределенными параметрами
При Электрические цепи с распределенными параметрами во всех точках линии напряжение отсутствует (u = 0). Затем напряжение растет во всех пунктах линии, кроме узлов, и при Электрические цепи с распределенными параметрами достигает амплитуды.
Но эта амплитуда напряжения во всех пунктах линии разная. В месте пучности напряжение достигает наибольшей величины U2m, а в узле она всегда равна нулю.
Электромагнитный процесс, подчиняющийся уравнениям (26.15), называется стоячей волной, характерной особенностью которой является неподвижность узлов и пучностей на линии.

Бегущая волна

Из тригонометрии известно, что
Электрические цепи с распределенными параметрами
Следовательно, напряжение и ток в линии можно представить суммой двух составляющих, каждая из которых является уравнением бегущей волны:
Электрические цепи с распределенными параметрами
Первое слагаемое в этих уравнениях — прямая волна, распространяющаяся от начала к концу линии; второе — обратная волна с такой же амплитудой.
В этом можно убедиться, рассмотрев подробно одну из составляющих, например первую в уравнении напряжения.
Предположим, что некоторая величина напряжения u' в момент времени t имеет место в пункте, пространственное положение которого определяется расстоянием x от конца (или начала) линии (см. рис. 26.5):
Электрические цепи с распределенными параметрами
Распространение волны напряжения означает, что через бесконечно малый промежуток времени dt такое же напряжение u' возникает в другом пункте линии, отстоящем от первого на бесконечно малое расстояние dx:
Электрические цепи с распределенными параметрами
Равенство напряжений в моменты времени, отстоящие на dt, возможно при равенстве аргументов синусов в обоих уравнениях, т. е. при
Электрические цепи с распределенными параметрами
Отсюда
Электрические цепи с распределенными параметрами
или
Электрические цепи с распределенными параметрами
Отношение Электрические цепи с распределенными параметрами характеризует скорость распространения волны напряжения вдоль линии и называется фазовой скоростью волны.
Знак минус указывает на то, что волна движется от начала к концу линии (расстояние x уменьшается).
Аналогично можно показать, что вторая составляющая напряжения в уравнении (26.16) представляет собой волну, распространяющуюся в обратном направлении (x увеличивается).
Волна, распространяющаяся от начала к концу линии, называется прямой или падающей, а волна, распространяющаяся в обратном направлении (от конца линии к началу), — обратной или отраженной.
Те же рассуждения можно отнести к составляющим тока во втором уравнении (26.16).
Таким образом, стоячая волна напряжения представляет собой сумму, а волна тока — разность прямой (падающей) и обратной (отраженной) волн одинаковой амплитуды.

Волновое сопротивление. Длина волны

Уравнения (26.16) запишем в таком виде:
Электрические цепи с распределенными параметрами
Электрические цепи с распределенными параметрами
Отсюда
Электрические цепи с распределенными параметрами
Волновое сопротивление линии выражается отношением напряжения к току падающих волн или аналогичным отношением для отраженных волн.
Волновое сопротивление линии можно определить через входные сопротивления при холостом ходе и коротком замыкании:
Электрические цепи с распределенными параметрами
Большой интерес представляет также расстояние, на которое бегущая волна распространяется за время одного периода синусоидально изменяющегося напряжения или тока.
Из формулы (26.17) видно, что фазовая скорость постоянна, поэтому
Электрические цепи с распределенными параметрами
Путь, пройденный волной за время периода Электрические цепи с распределенными параметрами называется длиной волны:
Электрические цепи с распределенными параметрами
В линии без потерь фазовая скорость
Электрические цепи с распределенными параметрами
а длина волны
Электрические цепи с распределенными параметрами
Найдем величину фазовой скорости для воздушной линии без потерь, подставляя в формулу (26.19) L0 и С0 двухпроводной линии, определенные ранее [см. формулы (7.31), (8.29)]:
Электрические цепи с распределенными параметрами
Фазовая скорость электромагнитной волны в воздушной линии без потерь равна скорости света.
Если среда, в которой распространяется электромагнитная волна, характеризуется величинами диэлектрической Электрические цепи с распределенными параметрами и магнитной проницаемости Электрические цепи с распределенными параметрами то
Электрические цепи с распределенными параметрами
Принимая Электрические цепи с распределенными параметрами при частоте f = 50 Гц получим длину волны:
Электрические цепи с распределенными параметрами
Нетрудно заметить, что при частоте Электрические цепи с распределенными параметрами в реальных линиях электропередачи 6—220 кВ, длина которых значительно меньше 6000 км, укладывается только небольшая часть длины волны. Поэтому волнообразное изменение напряжения и тока вдоль этих линий при такой частоте практически не наблюдается.
В линиях дальних передач с номинальным напряжением 500 кВ и более изменения величины напряжения вдоль линии становятся заметными и приходится принимать меры к его выравниванию. С увеличением частоты длина волны уменьшается. В технике связи, где применяются высокие частоты, длина волны может быть во много раз меньше длины линии.

Задача 26.3.

В конце двухпроводной линии без потерь напряжение U2 = 600 В при холостом ходе. Определить напряжение и ток в начале линии, если известны: волновое сопротивление Электрические цепи с распределенными параметрами длина линии 24 км, коэффициент распространения Электрические цепи с распределенными параметрами
План решения.
1.    Напряжение в начале линии по первой формуле (26.13) при I2 = 0.
2.    Ток в начале линии по второй формуле (26.13).
Выполнить подсчеты по данному плану.
Дополнительное задание: определить напряжение и ток в начале линии при коротком замыкании на конце, где ток I = 4 А.

Нагрузочные режимы длинной линии без потерь

Кроме крайних режимов холостого хода и короткого замыкания для практики еще более интересными являются нагрузочные режимы, когда в конце линии включается приемник электромагнитной энергии. Из различных нагрузочных режимов рассмотрим режимы с согласованной и несогласованной активными нагрузками.

Режим с согласованной нагрузкой

Режим в линии называется согласованным, если сопротивление нагрузки в конце линии равно ее волновому сопротивлению: Электрические цепи с распределенными параметрами В этом случае Электрические цепи с распределенными параметрами а уравнения (26.13) записывают так:
Электрические цепи с распределенными параметрами
Учитывая, что
Электрические цепи с распределенными параметрами
уравнения (26.21) можно записать в виде
Электрические цепи с распределенными параметрами
Предположим, что синусоидальное напряжение в конце линии имеет начальную фазу ψ = 0, тогда Электрические цепи с распределенными параметрами
Если нагрузка линии активная (R2 = Zc), ток и напряжение совпадают по фазе: Электрические цепи с распределенными параметрами
Уравнения напряжения и тока в линии:
Электрические цепи с распределенными параметрами
В этом случае мгновенные величины напряжения и тока в любом пункте линии на расстоянии x от ее концов определяются уравнениями
Электрические цепи с распределенными параметрами
Это уравнения бегущих волн напряжения и тока, распространяющихся от начала к концу линии (прямые волны) с фазовой скоростью Электрические цепи с распределенными параметрами
При согласованной нагрузке отраженных волн в линии нет, следовательно, энергия, которую несет падающая электромагнитная волна, полностью поглощается в нагрузке.

Режим с несогласованной нагрузкой

Нагрузка линии называется несогласованной, если нагрузочное сопротивление в конце линии Электрические цепи с распределенными параметрами отличается от волнового сопротивления Электрические цепи с распределенными параметрами, т. е. Электрические цепи с распределенными параметрами
Рассмотрим случай, когда линия замкнута на активное сопротивление Электрические цепи с распределенными параметрами Напряжение в конце линии определяется произведением Электрические цепи с распределенными параметрами Уравнения (26.13) для этого случая
Электрические цепи с распределенными параметрами
Отношение Электрические цепи с распределенными параметрами называется коэффициентом бегущей волны.
С введением этого коэффициента уравнения (26.25) принимают следующий вид:
Электрические цепи с распределенными параметрами
Электрические цепи с распределенными параметрами
Вместо Электрические цепи с распределенными параметрами в уравнении напряжения и Электрические цепи с распределенными параметрами в уравнении тока подставим тождественные им выражения:
Электрические цепи с распределенными параметрами
Электрические цепи с распределенными параметрами
После подстановки получим
Электрические цепи с распределенными параметрами
Первые слагаемые в этих уравнениях аналогичны уравнениям (26.21). Анализ их ранее показал, что они выражают бегущие волны напряжения и тока. Вторые слагаемые аналогичны уравнениям (26.14), которые являются уравнениями стоячих волн. Опуская промежуточные выводы, выполненные ранее для бегущих и стоячих волн, напишем уравнения для мгновенных величин напряжения и тока при несогласованной нагрузке:
Электрические цепи с распределенными параметрами
Таким образом, режим в линии без потерь при несогласованной нагрузке можно рассматривать как наложение бегущих и стоячих волн напряжения и тока.
Наличие бегущих волн в направлении от начала к концу линии указывает на потребление энергии в нагрузке. Однако потребляется лишь часть энергии электромагнитной волны, другая часть отражается от конца линии.
Режимы холостого хода и с согласованной нагрузкой линии без потерь являются частными случаями, соответствующими значениям коэффициента бегущей волны k = 0 (холостой ход) и k = 1 (согласованная нагрузка).

Коэффициенты отражения и преломления

Представление электромагнитного процесса в линии как наложение прямых (падающих) и обратных (отраженных) волн напряжения и тока возможно не только в рассмотренных частных случаях. Оно соответствует общим уравнениям напряжения и тока в линии (26.12), в правой части которых записана сумма (разность) двух составляющих.
При анализе электромагнитных процессов в длинных линиях вводится понятие о коэффициенте отражения р, который равен отношению комплекса напряжения отраженной волны к комплексу напряжения падающей волны или аналогичному отношению комплексов токов:
Электрические цепи с распределенными параметрами
Выразим напряжение и ток в конце линии их падающими и отраженными составляющими в соответствии с уравнениями (26.11):
Электрические цепи с распределенными параметрами
При совместном решении этих уравнений найдем коэффициент отражения:
Электрические цепи с распределенными параметрами
Подставим найденное выражение ρ в уравнения напряжения U2 и тока I2:
Электрические цепи с распределенными параметрами
Множители
Электрические цепи с распределенными параметрами
называются коэффициентами преломления волн напряжения (тока).
Согласно выражениям (26.29), коэффициент преломления равен отношению комплексов напряжения (тока) в рассматриваемом пункте линии к комплексу напряжения (тока) падающей волны:
Электрические цепи с распределенными параметрами
Анализ этих формул показывает:
1) при холостом ходе линии Электрические цепи с распределенными параметрами коэффициент отражения Электрические цепи с распределенными параметрами а коэффициенты преломления в конце линии Электрические цепи с распределенными параметрами Электрические цепи с распределенными параметрами напряжение в конце линии равно удвоенной величине напряжения падающей волны, а ток равен нулю: Электрические цепи с распределенными параметрами  Электрические цепи с распределенными параметрами
2) при коротком замыкании линии Электрические цепи с распределенными параметрами коэффициент отражения Электрические цепи с распределенными параметрами коэффициент преломления Электрические цепи с распределенными параметрами Электрические цепи с распределенными параметрами напряжение в конце линии равно нулю, а ток равен удвоенной величине тока падающей волны: Электрические цепи с распределенными параметрами Электрические цепи с распределенными параметрами
3) при согласованной нагрузке Электрические цепи с распределенными параметрами коэффициент отражения Электрические цепи с распределенными параметрами коэффициент преломления Электрические цепи с распределенными параметрами  Электрические цепи с распределенными параметрами напряжение и ток в конце линии равны своим падающим составляющим: Электрические цепи с распределенными параметрами  Электрические цепи с распределенными параметрами при несогласованной активной нагрузке Электрические цепи с распределенными параметрами коэффициент отражения
Электрические цепи с распределенными параметрами  Электрические цепи с распределенными параметрами
где k — коэффициент бегущей волны;
Электрические цепи с распределенными параметрами
Электрические цепи с распределенными параметрами

Распространение электромагнитной волны с прямоугольным фронтом по линии без потерь

Как было показано в предыдущих параграфах, установившийся режим в длинной линии при синусоидальном изменении напряжения и тока удобно представить наложением прямых и обратных электромагнитных волн.
Переходные процессы в цепях с распределенными параметрами тоже рассматриваются как движение прямых и отраженных волн, возникающих после включения или отключения какого-либо участка, при передаче телемеханических или телефонно-телеграфных сигналов по линиям связи т. п.
Переходные процессы могут быть также следствием изменения внешних магнитных и электрических полей, связанным с грозовыми явлениями.

Электромагнитная волна с прямоугольным фронтом

В цепи с сосредоточенными параметрами переходный процесс начинается и протекает одновременно во всех ее элементах. Особенностью переходного процесса в длинной линии является то, что появившееся в некоторой точке возмущение распространяется по линии с определен-ной скоростью, поэтому переходный процесс в данном пункте линии начинается тем позднее, чем он дальше от места возмущения.

При переходных процессах в цепях с распределенными параметрами (линии, обмотки электрических машин и трансформаторов) могут возникать электромагнитные волны различной формы.

Качественную сторону явления распространения электромагнитной волны рассмотрим на примере волны с прямоугольным фронтом (рис. 26.7) в линии без потерь.

Электрические цепи с распределенными параметрами
Рис. 26.7. Распределение электромагнитной волны с прямоугольным фронтом вдоль линии без потерь

Для такой волны характерно то, что во всех пунктах линии, расположенных до фронта волны, напряжение и ток равны нулю, а в пунктах линии, расположенных за фронтом волны, напряжение и ток постоянны.

Распространение электромагнитной волны с прямоугольным фронтом означает, что напряжение и ток последовательно в каждом пункте линии изменяются скачком. Как было показано ранее, такое изменение напряжения и тока в цепях, обладающих емкостью и индуктивностью, невозможно, так как требует источника бесконечно большой мощности. Таких источников не существует, поэтому волну с прямоугольным фронтом нужно рассматривать как некоторую идеализацию реального процесса.

Электрические и магнитные явления в линии — это две стороны единого электромагнитного процесса. Однако эти явления удобно рассматривать отдельно, т. е. выделять из электромагнитной волны волну напряжения и волну тока.

Были записаны в комплексной форме уравнения (26.1) для синусоидального изменения напряжения и тока. Те же уравнения для мгновенных величин напряжения и тока в однородной линии без потерь имеют вид
Электрические цепи с распределенными параметрами
Решением этих уравнений в общем виде являются функции
Электрические цепи с распределенными параметрами
где Электрические цепи с распределенными параметрами — скорость распространения электромагнитной волны вдоль линии; эта величина, называемая волновой скоростью, численно равна фазовой скорости [см. формулу (26.19)]; Zc — волновое сопротивление линии.

Уравнения (26.32) по своей структуре подобны уравнениям (26.16), поэтому любой электромагнитный переходный процесс в линии можно рассматривать как наложение прямых и обратных волн напряжения и тока. Физический смысл переходных процессов в линии удобно выяснить на простейших примерах.

Подключение источника постоянного напряжения Uк бесконечно длинной линии

После включения источника вдоль линии будет распространяться волна с прямоугольным фронтом, заряжающая ее последовательно (от одного пункта к другому) до напряжения U0. На поверхности проводов появляется заряд, величина которого на единице длины Q0 = C0U0.

Если за время dt волна переместилась на расстояние dx, линия получает дополнительный заряд Электрические цепи с распределенными параметрами

Этот заряд как бы распространяется по проводам от источника вдоль линии до точки х1, в которой находится в данный момент фронт волны; при этом образуется ток
Электрические цепи с распределенными параметрами
Один провод заряжается положительно, а другой (обратный) — отрицательно, что соответствует противоположному направлению токов в них (рис. 26.7).
На отрезке линии длиной dx, около фронта волны, возникновение электрического поля сопровождается током смещения между проводами. Таким образом, цепь оказывается замкнутой. При движении волны она удлиняется, но ток остается постоянным, равным I0.

Контур, по которому замыкается ток, пронизывается магнитным потоком, направленным, согласно правилу буравчика, в плоскостях, перпендикулярных осям проводов.
Перемещение волны на dx сопровождается увеличением магнитного потока на величину
Электрические цепи с распределенными параметрами
и наведением в контуре э. д. с. самоиндукции
Электрические цепи с распределенными параметрами
Э. д. с. самоиндукции направлена против тока, т. е. у фронта волны она направлена навстречу напряжению U0 и равна ему по величине
Электрические цепи с распределенными параметрами
Отношение напряжения к току дает величину волнового сопротивления линии
Электрические цепи с распределенными параметрами
Энергия, отдаваемая источником в линию за единицу времени, Электрические цепи с распределенными параметрами
На отрезке линии длиной, равной единице, запасается энергия Электрические цепи с распределенными параметрами в электрическом, Электрические цепи с распределенными параметрами— в магнитном полях.
Согласно закону сохранения энергии, мощность источника должна быть равна энергии, запасаемой в электромагнитном поле линии за 1 с:
Электрические цепи с распределенными параметрами
где Электрические цепи с распределенными параметрами — скорость электромагнитной волны, равная расстоянию, которое пробегает волна за 1 с, создавая на своем пути электрическое и магнитное поля.

Включение источника постоянного напряжения на линию конечной длины

Пользуясь выводами, полученными ранее, рассмотрим движение волн с учетом возможных отражений от конца линии.

Если линия разомкнута на конце, то коэффициенты отражения ρ и преломления m, согласно формулам (26.28) и (26.30), оказываются равными: ρ = 1; mu = 2; mi = 0. Следовательно, u2 = 2Uпад; i2 = 0.

Отраженная волна напряжения накладывается на падающую, в результате чего напряжение на линии удваивается (рис. 26.8, а).
При этом энергия электромагнитной волны преобразуется в энергию электрического поля.

При коротком замыкании конца линии ρ = —1; mu = 0; mi = 2.
Отраженная волна напряжения компенсирует падающую волну (u2 = 0), а ток в линии удваивается (рис. 26.8, б). Этот процесс сопровождается переходом всей энергии волны в энергию магнитного поля.
При согласованной нагрузке (R2 = Zс) ρ = 0; u2 = Uпад; i2 = Iпад.
Отраженных волн нет, а энергия волны полностью поглощается нагрузкой (рис. 26.8, в).

Электрические цепи с распределенными параметрами
Рис. 26.8. Различные случаи отражения электромагнитной волны с прямоугольным фронтом от конца линии

Электрические цепи с распределенными параметрами

Электрические цепи, параметры которых (сопротивления, индуктивности и емкости) распределены по всей длине, называются цепями с распределенными параметрами.

В неразветвленных цепях с распределенными параметрами токи в разных сечениях неодинаковы. Это происходит вследствие токов утечки между проводами, токов смещения через межпроводные емкости и по ряду других причин. Так как токи утечки пропорциональны напряжению, а токи смещения пропорциональны частоте и напряжению, то с ростом напряжения и частоты их влияние становится более заметным. Кроме того, токи утечки и смещения увеличиваются с увеличением протяженности линии.

К цепям с распределенными параметрами относятся линии электропередачи.

Любая электрическая линия, например двухпроводная линия электропередачи или электросвязи, характеризуется четырьмя первичными параметрами, отнесенными к единице ее длины: активным сопротивлением проводов Электрические цепи с распределенными параметрами, индуктивностью проводов Электрические цепи с распределенными параметрами, активной проводимостью изоляции между проводами Электрические цепи с распределенными параметрами и емкостью между проводами Электрические цепи с распределенными параметрами. Если первичные параметры распределены равномерно по всей длине линии, то линию называют однородной.

Для исследования длинные линии с распределенными параметрами заменяют схемами замещения (рис. 21.6).

Электрические цепи с распределенными параметрами

На схеме замещения однородной линии с потерями (рис. 21.6а) рассматривается длинная линия, состоящая из бесконечно большого числа элементарных ячеек длиной dx с параметрами: активным сопротивлением Электрические цепи с распределенными параметрами, индуктивностью Электрические цепи с распределенными параметрами, проводимостью изоляции Электрические цепи с распределенными параметрами и емкостью Электрические цепи с распределенными параметрами, находящихся на разном расстоянии х от начала линии.

В зависимости от целей и требуемой точности выполненного расчета можно учитывать все четыре параметра или некоторые из них. Например, при исследовании линии электропередачи напряжением 35 кВ и частотой f=50 Гц часто не учитываются токи смещения и утечки, т.е. принимается g0 = 0 и С0 = 0.

При высокой частоте или при коротких импульсах напряжения токи смешения могут быть значительно большими и ими пренебречь нельзя. Но при высокой частоте и малой длине линии можно пренебречь активным сопротивлением R0 и проводимостью g0. При этом получается схема замещения однородной линии без потерь (рис. 21.66).

Исследуя длинную линию электропередачи как цепь с распределенными параметрами, в которой имеются токи утечки и смещения, передачу энергии следует рассматривать как движение электромагнитных волн, или волн тока и напряжения.

При включении генератора в начале линии возникают волны тока и напряжения, которые движутся от генератора (начало линии) к нагрузке (конец линии). Когда электромагнитная волна достигает конца линии, ее энергия лишь частично поглощается нагрузкой. При этом возникают отраженные волны тока и напряжения, перемещающиеся от нагрузки к генератору.

Только при специально подобранном сопротивлении нагрузки вся энергия поглощается нагрузкой и отраженные волны отсутствуют.

Если сопротивление нагрузки в конце линии равно волновому сопротивлению линии, то такая нагрузка называется согласованной. Если же сопротивление нагрузки в конце линии отличается от волнового сопротивления, то нагрузка называется несогласованной. Волновое сопротивление выражается отношением напряжения к току падающих (прямых) или отраженных волн. При согласованной нагрузке отраженных волн в линии нет, т. е. энергия, которую несет падающая электромагнитная волна, полностью поглощается в нагрузке.

При исследовании различных режимов работы длинных линий необходимо учитывать коэффициент отражения р и коэффициент преломления m.

Коэффициент отражения характеризует соотношение между падающими (прямыми) и отраженными волнами напряжения и тока:

Электрические цепи с распределенными параметрами

Коэффициент преломления в рассматриваемом пункте линии n:

Электрические цепи с распределенными параметрами

То есть коэффициент преломления m равен отношению комплексов напряжения (тока) в рассматриваемой точке n к комплексу напряжения (тока) падающей волны.

Если на каждую падающую (прямую) волну напряжения и тока накладывается отраженная волна с амплитудой, равной амплитуде падающей волны, то результирующий процесс называют стоячей волной.

Скорость распространения электромагнитных волн в проводах воздушной линии в первом приближении можно считать равной скорости распространения электромагнитных волн в вакууме, т.е. с = 300ООО км/сек.

Расстояние, на которое распространяется электромагнитная волна, или волна тока и напряжения, в течение периода Т, называется длиной волны Электрические цепи с распределенными параметрами, т. е. Электрические цепи с распределенными параметрами

При частоте Электрические цепи с распределенными параметрами

При частоте Электрические цепи с распределенными параметрами

При частоте Электрические цепи с распределенными параметрами

При известной длине волны легко показать распределение тока или напряжения вдоль линии в любой момент времени и без вычислений токов утечки и смещения. Например, при частоте f = 1 МГц и Электрические цепи с распределенными параметрами = 300 м в некоторый момент времени ток i в начале линии (на зажимах генератора) равен нулю. В тот же момент времени на расстоянии Электрические цепи с распределенными параметрами/4 = 75 м от начала наблюдается наибольшее значение тока; на расстоянии Электрические цепи с распределенными параметрами/2= 150 м от начала он равен нулю; на расстоянии ЗЭлектрические цепи с распределенными параметрами/4 = 225 м ток опять максимален; на расстоянии Электрические цепи с распределенными параметрами = 300 м ток снова равен нулю и т. д.

В следующий момент времени характер распределения тока будет таким же, но нулевые и амплитудные значения тока будут наблюдаться в других сечениях линии.

Неодинаковость тока наблюдается только в линиях, длина которых i соизмерима или больше длины волны Электрические цепи с распределенными параметрами. Такие линии называются длинными по отношению к длине волны. Очевидно, одна и та же линия при одной частоте будет длинной, а при другой, меньшей частоте Электрические цепи с распределенными параметрами может быть недлинной. Например, при стандартной частоте f = 50 Гц вдоль линии протяженностью Электрические цепи с распределенными параметрами = 300 м укладывается только одна двадцатитысячная часть длины волны

Электрические цепи с распределенными параметрами

Следовательно, величина тока, проходящего через каждое сечение линии в любой выбранный момент времени, практически одна и та же, т. е. линия слишком «коротка», чтобы в ней можно было заметить неравномерное распределение тока.

Электрические цепи с распределенными параметрами

При частоте же f = 1 МГц, как показано на рис. 21.7, в той же линии (Электрические цепи с распределенными параметрами = 300 м) уложится одна волна тока, и, следовательно, линия считается длинной.