Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Производство, передача и потребление электрической энергии с примерами

Производство, передача и потребление электрической энергии:

Электрическая энергия вырабатывается на электростанциях. В зависимости от вида используемого носителя энергии все современные электростанции делятся на тепловые, гидроэлектростанции и атомные. Приведем характеристики основных типов электростанций.

  • Тепловые электростанции (ТЭС) используют теплоту, получаемую при сжигании угля, нефти, мазута, газа и других горючих ископаемых (КПД Производство, передача и потребление электрической энергии с примерами
  • Гидроэлектростанции (ГЭС) используют энергию движущейся воды рек, водохранилищ и иных водных потоков (КПД Производство, передача и потребление электрической энергии с примерами
  • Атомные электростанции (АЭС) работают на энергии, выделяющейся при расщеплении ядер урана и плутония (КПД Производство, передача и потребление электрической энергии с примерами

При передаче электроэнергии от электростанций к крупным промышленным центрам и городам наиболее часто используют проводные линии передач, которые являются надежным и сравнительно недорогим способом передачи энергии. Часть передаваемой энергии неизбежно теряется в соответствии с законом Джоуля — Ленца:

Производство, передача и потребление электрической энергии с примерами

где Производство, передача и потребление электрической энергии с примерами — действующее значение силы тока в линии электропередачи, Производство, передача и потребление электрической энергии с примерами — сопротивление проводов, Производство, передача и потребление электрической энергии с примерами — промежуток времени передачи энергии.

Как следует из закона Джоуля — Ленца, для уменьшения тепловых потерь в линиях передач необходимо уменьшать их сопротивление и действующее значение силы тока. Однако уменьшение сопротивления Производство, передача и потребление электрической энергии с примерами проводов возможно только за счет увеличения их поперечного сечения, что приводит к значительному увеличению их массы. Вследствие этого наиболее эффективно передавать электроэнергию при малом действующем значении силы тока. Уменьшение силы тока в Производство, передача и потребление электрической энергии с примерами раз снижает тепловые потери в проводах в Производство, передача и потребление электрической энергии с примерами раз. Для сохранения величины передаваемой по линиям передач мощности следует повышать действующее значение напряжения во столько же раз, во сколько уменьшили действующее значение силы тока, исходя из формулы Производство, передача и потребление электрической энергии с примерами Поэтому на практике применяют высоковольтные (сотни тысяч вольт) линии электропередач (рис. 39).

Производство, передача и потребление электрической энергии с примерами

Поскольку генераторы переменного тока на электростанциях дают напряжения не более 16—20 кВ, то для повышения напряжения в линиях передач до необходимого значения применяют повышающие трансформаторы.

Для безопасного обслуживания потребителей энергии (станков, бытовых приборов и др.) напряжение их питания должно быть низким, что легко достигается при использовании понижающих трансформаторов. Понижение напряжения обычно происходит в несколько этапов.

Рассмотрим блок-схему передачи и распределения электроэнергии (рис. 40): генератор переменного тока Производство, передача и потребление электрической энергии с примерами повышающий трансформатор (до Производство, передача и потребление электрической энергии с примерами высоковольтная линия электропередачи Производство, передача и потребление электрической энергии с примерами понижающий трансформатор (до Производство, передача и потребление электрической энергии с примерами потребитель современном обществе потребление электроэнергии распределяется примерно следующим образом: промышленность — 70 %; транспорт — 15 %; сельское хозяйство — 10 %; бытовое потребление — 5 %.

Производство, передача и потребление электрической энергии с примерами

В настоящее время все большее распространение получают линии передач, работающие на постоянном токе. Хотя преобразование постоянного напряжения сложнее и дороже, но постоянный ток по сравнению с переменным обладает рядом преимуществ.

Во-первых, постоянный ток, в отличие от переменного, не создает переменные магнитные поля, которые индуцируют токи в близлежащих проводниках, что приводит к потерям мощности.

Во-вторых, постоянный ток можно передавать при более высоком напряжении, так как действующее напряжение в цепи равно амплитудному, и не следует опасаться электрического пробоя изолятора или воздуха при том же амплитудном напряжении.

Развитие цивилизации сопровождается непрерывным ростом энергопотребления на нашей планете. Однако запасы природного топлива (нефти, газа, угля, торфа) и иных полезных ископаемых на Земле ограничены, поскольку из-за изменения геологических условий их формирование в настоящее время практически прекратилось.

Явным лидером среди энергоносителей на сегодняшний день является нефть, поскольку ее сравнительно легко добывать, транспортировать, очищать и использовать. Помимо этого, нефть также является источником разнообразных синтетических материалов — красок, лекарств, синтетических волокон, пластмасс и др.

По различным оценкам, в настоящее время выработано около 60 % разведанных основных месторождений угля и нефти.

В нашей стране запасы нефти и угля не являются стратегическими. На территории Республики Беларусь к основным видам добываемых топливных ресурсов следует отнести дрова и торф.
Работа электростанций вследствие их значительной мощности существенным образом влияет на состояние окружающей среды и приводит к появлению следующих экологических проблем:

  • ТЭС — загрязнение атмосферы продуктами сгорания, изменение природного теплового баланса из-за рассеяния тепловой энергии;
  • ГЭС — изменение климата, нарушение экологического равновесия, уменьшение пахотных площадей;
  • АЭС — опасность радиоактивного загрязнения среды при авариях, проблемы захоронения радиоактивных отходов.

Одной из главных экологических проблем современности является рост выбросов в атмосферу продуктов сгорания топлива (в первую очередь углекислого газа). Углекислый газ «окутывает» Землю подобно пленке, препятствуя ее охлаждению. Это приводит к парниковому эффекту, при котором средняя температура на Земле медленно повышается. Соответственно, за последние десятилетия на планете происходит глобальное потепление, которое, согласно прогнозам ученых, может привести к необратимым изменениям в климате Земли.

Рост энергопотребления заставляет ученых и инженеров искать альтернативные источники энергии, которые имели бы возобновляемый характер, т.е., в отличие от нефти и газа, могли бы самостоятельно восстанавливаться с течением времени.

К возобновляемым источникам энергии относят ветер, недра Земли (геотермальную энергию), морские приливы, а также солнечное излучение, используемое напрямую.

Ветроэнергетика — использование кинетической энергии ветра для получения электроэнергии. Энергия ветра уже достаточно успешно преобразуется в электроэнергию в многочисленных небольших ветряных генераторах в зонах устойчивых ветров (рис. 41).

Производство, передача и потребление электрической энергии с примерами

Проекты будущего предлагают использовать в качестве возобновляемых источников энергии колоссальную энергию океанических и воздушных течений, тропических ураганов и торнадо. Ключевая причина их формирования — неравномерное нагревание Солнцем различных участков поверхности Земли.

Геотермальная энергетика — использование естественного тепла Земли для выработки электрической энергии. Геотермальная энергия в местах естественных разломов земной коры используется для нужд человека. Например, столица Исландии — Рейкьявик полностью отапливается за счет геотермальных источников. Запасы геотермальной энергии достаточно велики, о чем можно судить по громадной разрушительной силе землетрясений и извержений вулканов и гейзеров.

Приливная энергетика использует энергию морских приливов. В настоящее время делаются первые шаги для использования энергии океанических приливов и отливов. Инженерная идея подобных проектов проста: использовать перепад уровней воды во время прилива и отлива для вращения водой гидротурбин, чтобы на соединенных с ними гидрогенераторах производить электричество.

Гелиоэнергетика — получение электрической энергии из энергии солнечного излучения. Развитие современных технологий позволяет эффективно использовать энергию, вырабатываемую солнечными батареями. Так, в южных широтах энергии подобных батарей, установленных на крыше, хватает для энергоснабжения небольшого дома. Современные технологии позволяют, используя солнечные батареи, получать электрическую энергию от солнечного излучения не только на Земле, но и в космосе (рис. 42).

Производство, передача и потребление электрической энергии с примерами

Есть смелые проекты, в которых предлагается разместить солнечные батареи в ближнем космосе на расстоянии 36000 км от поверхности Земли. Это так называемая «синхронная» орбита, на которой батареи будут казаться неподвижными для земного наблюдателя, поскольку период их обращения будет равен 24 ч. В этом случае батареи будут находиться в тени Земли только 2 % времени, что позволит производить в десятки раз больше энергии, чем на Земле. Энергия Солнца, преобразованная в электромагнитный пучок сверхвысокой частоты, будет передаваться на Землю на большие антенны.

Водородная энергетика:

Самым распространенным перспективным источником энергии в масштабах Вселенной следует считать водород, поскольку его изотопы позволяют осуществить реакцию термоядерного синтеза . Энергия термоядерного синтеза предпочтительнее энергии ядерного расщепления , поскольку из одинаковой массы вещества при синтезе может быть извлечено в 10 раз больше энергии, чем при расщеплении. Кроме того, водород (топливо синтеза) гораздо легче добывать в Мировом океане, чего нельзя сказать об уране и тории, служащими топливом при реакциях ядерного расщепления. Немаловажным является и тот факт, что при реакции термоядерного синтеза не возникает радиоактивных отходов, поскольку ее основной продукт — гелий, являющийся инертным газом. А радиоактивные изотопы гелия Производство, передача и потребление электрической энергии с примерами имеют периоды полураспада Производство, передача и потребление электрической энергии с примерами с соответственно.

Возобновляемые источники энергии сравнительно безопасны, поскольку их использование не приводит к загрязнению окружающей среды.

Передача и использование электрической энергии

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, так как при этом возникает необходимость многократного преобразования электрического напряжения.

Как известно, тепловые потери в проводниках пропорциональны квадрату силы тока, поэтому для их уменьшения целесообразно передавать электроэнергию при малой силе тока. Уменьшение силы тока в n раз снижает тепловые потери в проводах в Производство, передача и потребление электрической энергии с примерами раз. Напряжение при этом следует повышать для сохранения передаваемой мощности, поэтому на практике применяют высоковольтные линии электропередачи.

Напряжение питания отдельных потребителей должно быть низким для упрощения их конструкции и безопасности обслуживания, что легко достигается при применении трансформаторов.

Производство, передача и потребление электрической энергии с примерами
Рассмотрим блок-схему передачи и распределения электроэнергии (рис. 207): генератор переменного тока Производство, передача и потребление электрической энергии с примерами

  • повышающий трансформатор Производство, передача и потребление электрической энергии с примерами
  • высоковольтные линии электропередачи Производство, передача и потребление электрической энергии с примерами
  • понижающие трансформаторы Производство, передача и потребление электрической энергии с примерами потребитель.

В современном обществе потребление электроэнергии распределяется примерно следующим образом:

  • промышленность — 70 %;
  • транспорт — 15 %;
  • сельское хозяйство — 10 %;
  • бытовое потребление — 5 %.

В настоящее время все большее распространение получают линии передач, использующие постоянный ток. Это происходит потому, что, хотя преобразование постоянного напряжения сложнее и дороже, постоянный ток по сравнению с переменным обладает рядом преимуществ.

  • Во-первых, постоянный ток, в отличие от переменного, не создает переменные магнитные поля, которые индуцируют токи в близлежащих проводах, что приводит к потерям мощности.
  • Во-вторых, постоянный ток можно передавать при более высоком напряжении — у постоянного тока эффективное напряжение равно амплитудному, и не следует опасаться электрического пробоя изолятора или воздуха при амплитудном напряжении.

Электроэнергия вырабатывается на электростанциях. В зависимости от вида первоначально используемого носителя энергии все современные электростанции делятся на тепловые, атомные и гидроэлектростанции. Приведем их некоторые данные:

  • тепловые электростанции (ТЭС) работают на угле, нефти, мазуте, газе и др. (КПД Производство, передача и потребление электрической энергии с примерами);
  • гидроэлектростанции (ГЭС) используют энергию падающей воды (КПД Производство, передача и потребление электрической энергии с примерами
  • атомные электростанции (АЭС) работают на энергии, выделяющейся при расщеплении ядер урана и плутония (КПД Производство, передача и потребление электрической энергии с примерами

Работа электростанций вследствие их значительной мощности существенным образом влияет на состояние окружающей среды и приводит к появлению следующих экологических проблем:

  • ТЭС — загрязнение атмосферы продуктами сгорания, изменение природного теплового баланса из-за рассеяния тепловой энергии;
  • ГЭС — изменение климата, нарушение экологического равновесия, уменьшение пахотных площадей;
  • АЭС — опасность радиоактивного загрязнения среды при авариях, проблемы захоронения радиоактивных отходов.

В настоящее время существуют экологически чистые электростанции, иcпользующие энергию Солнца, ветра или морских приливов. Их доля в производстве электроэнергии невелика, однако она непрерывно возрастает.

Основные формулы:

Формула Томсона:
Производство, передача и потребление электрической энергии с примерами
Действующее (эффективное) значение силы переменного тока и напряжения:
Производство, передача и потребление электрической энергии с примерами
Емкостное сопротивление:
Производство, передача и потребление электрической энергии с примерами
Индуктивное сопротивление:
Производство, передача и потребление электрической энергии с примерами
Закон Ома для переменного тока:
Производство, передача и потребление электрической энергии с примерами
Сдвиг фаз:  Производство, передача и потребление электрической энергии с примерами
Мощность переменного тока:
Производство, передача и потребление электрической энергии с примерами
Коэффициент трансформации:

Производство, передача и потребление электрической энергии с примерами