Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

ТЕНДЕНЦИИ РАЗВИТИЯ И ПРИМЕНЕНИЯ МУЛЬТИМЕДИА.

Содержание:

Введение

Впервые термин «мультимедиа» появился в 1965 году и активно использовался вплоть до конца семидесятых годов для описания экстравагантных для того времени театрализованных шоу, использующих разные виды и формы представления информации: слайды, кино, видео, аудио фрагменты, световые эффекты и живую музыку. В конце 70 и начале 80-х годов под мультимедиа понимали представления, основанные на статических или динамических изображениях от нескольких проекторов, сопровождавшихся звуком или живой музыкой. Таким образом, средства «мультимедиа» воздействовали сразу на несколько органов человеческих чувств и представляли информацию в разных формах: визуальной, вербальной и аудиальной, что создавало (и создает) более глубокое эмоциональное воздействие, что, в свою очередь, и принесло успех и популярность этому виду театрализованных представлений. Возможность влияния на эмоциональную сферу человеческой психики является важным фактором при обучении, так как способствует более эффективному усвоению знаний. В течение следующего десятилетия термин «мультимедиа» включал в себя различные понятия. Благодаря применению мультимедиа в средствах информатизации за счет одновременного воздействия графической, звуковой, фото и видео информации, такие средства обладают большим эмоциональным зарядом и активно включаются в индустрию развлечений, практику работы различных учреждений, домашний досуг, образование.

Появление систем мультимедиа произвело революцию во многих областях деятельности человека. Одно из самых широких областей применения технология мультимедиа получила в сфере образования, поскольку средства информатизации, основанные на мультимедиа способны, в ряде случаев, существенно повысить эффективность обучения. Экспериментально установлено, что при устном изложении материала обучаемый за минуту воспринимает и способен переработать до одной тысячи условных единиц информации, а при "подключении" органов зрения до 100 тысяч таких единиц.

Актуальность: данная тема, рассматривает аспекты компьютерных возможностей, в настоящее время все больше используются мультимедиа технологии, в сети интернет, в компьютерных играх, различных программах, создано множество программ для создания таковых, поэтому данная тема является актуальной в настоящее время.

Виды мультимедиа 1.1

Мультимедиа делится на программную и аппаратную. Аппаратная сторона мультимедиа может быть представлена как стандартными средствами — видеоадаптерами, мониторами, дисководами, накопителями на жёстких дисках, так и специальными средствами — звуковыми картами, приводами CD-ROM. (см.рис 1) Программная сторона без аппаратной лишена смысла. Программные средства делятся на прикладные и специализированные. Прикладные — это сами приложения Windows, представляющие пользователю информацию в том или ином виде. Специализированные — это средства создания мультимедийных приложений — мультимедиа проектов (например, программа для создания мультимедиа презентаций MicroSoft, PowerPoint). Сюда входят графические редакторы, редакторы видеоизображений (например, AdobePremier), средства для создания и редактирования звуковой информации и т.д. (см.рис 2-3)

Рис.1 Привод CD-ROM

Так же мультимедиа может быть грубо классифицирована как линейная и нелинейная. Аналогом линейного способа представления может являться кино. Человек, просматривающий данный документ никаким образом не может повлиять на его вывод. Нелинейный способ представления информации позволяет человеку участвовать в выводе информации, взаимодействуя каким-либо образом со средством отображения мультимедийных данных. Такой способ взаимодействия человека и компьютера наиболее полным образом представлен в категориях компьютерных игр.

Рис.2 PowerPoint Рис.3 AdobePremier

Нелинейный способ представления мультимедийных данных иногда называется «гипермедиа». Мультимедиа представляет пользователю потрясающие возможности в создании фантастического мира (виртуальной реальности), интерактивного общения с этим миром, когда пользователь выступает не в роли стороннего пассивного созерцателя, а принимает активное участие в разворачивающихся там событиях; причем общение происходит на привычном для пользователя языке, в первую очередь на языке звуковых и видеообразов.

Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т. д.

К средствам мультимедиа относятся устройства речевого ввода и вывода информации; широко распространенные уже сейчас сканеры (поскольку они позволяют автоматически вводить в компьютер печатные тексты и рисунки); высококачественные видео- (video-) и звуковые- (sound-) платы, платы видеозахвата (video grabber), снимающие изображение с видеомагнитофона или с видеокамеры и вводящие его в ПК; высококачественные акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими видеоэкранами.

Но, пожалуй, еще с большим основанием к средствам мультимедиа относят внешние запоминающие устройства большой емкости на оптических дисках, часто используемые для записи звуковой и видеоинформации.

Современные тенденции развития мультимедийных технологий 1.2

Мультимедиа (multimedia) - это современная компьютерная информационная технология, позволяющая объединить в компьютерной системе текст, звук, видеоизображение, графическое изображение и анимацию (мультипликацию). Мультимедиа-это сумма технологий, позволяющих компьютеру вводить, обрабатывать, хранить, передавать и отображать (выводить) такие типы данных, как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук, речь.

Появляются бластеры, "сидиромы" и другие плоды эволюции, появляется интернет, WWW, микроэлектроника. (см.рис4) Человечество переживает информационную революцию. Появление систем мультимедиа подготовлено как с требованиями практики, так и с развитием теории. Однако, резкий рывок в этом направлении, произошедший в этом направлении за последние несколько лет, обеспечен прежде всего развитием технических и системных средств. Это и прогресс в развитии ПЭВМ: резко возросшие объем памяти, быстродействие, графические возможности, характеристики внешней памяти, и достижения в области видеотехники, лазерных дисков -- аналоговых и CD-ROM, а также их массовое внедрение. (см.рис5)

Рис.4 «микроэлектроника» Рис.5 «ПЭВМ»

Современный мультимедиа-ПК в полном “вооружении” напоминает домашний стереофонический Hi-Fi комплекс (см.рис 6), объединенный с дисплеем-телевизором. Он укомплектован активными стереофоническими колонками, микрофоном и дисководом для оптических компакт-дисков CD-ROM (CD -- Comрact Disc, ROM Read only Memory, память только для считывания). Кроме того, внутри компьютера укрыто новое для ПК устройство аудиоадаптер, позволивший перейти к прослушиванию чистых стереофонических звуков через акустические колонки с встроенными усилителями. Идейной предпосылкой возникновения технологии мультимедиа считают концепцию организации памяти "MEMEX", предложенную еще в 1945 году американским ученым Ваннивером Бушем. Она предусматривала поиск информации в соответствии с ее смысловым содержанием, а не по формальным признакам (по порядку номеров, индексов или по алфавиту и т.п.)

Рис.6 Hi-Fi комплекс

Однако всплеск интереса в конце 80-х годов к применению мультимедиа-технологии в гуманитарной областях (и, в частности, в историко-культурной) связан несомненно с именем выдающегося американского компьютерщика-бизнесмена Билла Гейтса, которому принадлежит идея создания и успешной реализации на практике мультимедийного (коммерческого) продукта на основе служебной музейной инвентарной базы данных с использованием в нем всех возможных "сред": изображений, звука, анимации, гипертекстовой системы ("National Art Gallery. London") Именно этот продукт аккумулировал в себе три основные принципа мультимедиа:

Представление информации с помощью комбинации множества воспринимаемых человеком сред (собственно термин происходит от англ. multi - много, и media - среда);

Наличие нескольких сюжетных линий в содержании продукта (в том числе и выстраиваемых самим пользователем на основе "свободного поиска" в рамках предложенной в содержании продукта информации);

Художественный дизайн интерфейса и средств навигации.

Несомненным достоинством и особенностью технологии являются следующие возможности мультимедиа, которые активно используются в представлении информации:

возможность хранения большого объема самой разной информации на одном носителе (до 20 томов авторского текста, около 2000 и более высококачественных изображений, 30-45 минут видеозаписи, до 7 часов звука);

возможность увеличения (детализации) на экране изображения или его наиболее интересных фрагментов, иногда в двадцатикратном увеличении (режим "лупа") при сохранении качества изображения. Это особенно важно для презентации произведений искусства и уникальных исторических документов;

возможность выделения в сопровождающем изображение текстовом или другом визуальном материале "горячих слов (областей)

возможность осуществления непрерывного музыкального или любого другого аудиосопровождения, соответствующего статичному или динамичному визуальному ряду;

возможность использования видеофрагментов из фильмов, видеозаписей и т.д., функции "стоп-кадра", покадрового "пролистывания" видеозаписи;

возможность подключения к глобальной сети Internet;

возможность работы с различными приложениями (текстовыми, графическими и звуковыми редакторами, картографической информацией);

возможность "запоминания пройденного пути" и создания "закладок" на заинтересовавшей экранной "странице";

возможность автоматического просмотра всего содержания продукта ("слайд-шоу") или создания анимированного и озвученного "путеводителя-гида" по продукту ("говорящей и показывающей инструкции пользователя"); включение в состав продукта игровых компонентов с информационными составляющими;

Цели применения продуктов, созданных в мультимедиа-технологиях 1.3

Основными целями применения продуктов, созданных в мультимедиа технологиях (CD-ROM с записанной на них информацией), являются:

Популяризаторская и развлекательная (CD используются в качестве домашних библиотек по искусству или литературе).

Научно-просветительская или образовательная (используются в качестве методических пособий).

Научно-исследовательская - в музеях и архивах и т.д. (используются в качестве одного из наиболее совершенных носителей и "хранилищ" информации).

Решаемые задачи охватывают все области интеллектуальной деятельности: науку и технику, образование, культуру, бизнес, а также применяются в среде обслуживания при создании электронных гидов с погружением в реальную среду, мультитеках. Компьютер, снабженный платой мультимедиа, немедленно становится универсальным обучающим или информационным инструментом по практически любой отрасли знания и человеческой деятельности - достаточно установить в него диск CD-ROM с соответствующим курсом (или занести требуемые файлы на винчестер).

Очень большие перспективы перед мультимедиа в медицине: базы знаний, методики операций, каталоги лекарств и т.п. В сфере бизнеса фирма по продаже недвижимости уже используют технологию мультимедиа для создания каталогов продаваемых домов - покупатель может увидеть на экране дом в разных ракурсах, совершить интерактивную видеопрогулку по всем помещениям, ознакомиться с планами и чертежами.

Примером применения мультимедиа в искусстве могут служить "музыкальные CD-ROM, которые позволяют не только прослушивать (с высочайшим качеством) произведения того или иного композитора, но и просматривать на экране партитуры, выделять и прослушивать отдельные темы или инструменты, знакомиться с рецензиями. Просматривать текстовые фото- и видеоматериалы, относящиеся к жизни и творчеству композитора, составу и расположению оркестра и хора, истории к устройству каждого инструмента оркестра и т.п. Выпущены, в частности, CD-ROM, посвященные 9-й симфонии Бетховена, "Волшебной флейте" Моцарта, "Весне священной" Стравинского.

Весьма перспективными выглядят работы по внедрению элементов искусственного интеллекта в системе мультимедиа. Они обладают способностью "чувствовать" среду общения, адаптироваться к ней и оптимизировать процесс общения с пользователем; они подстраиваются под читателей, анализируют круг их интересов, помнят вопросы, вызывающие затруднения, и могут сами предложить дополнительную или разъясняющую информацию. Системы, понимающие естественный язык, распознаватели речи еще более расширяют диапазон взаимодействия с компьютером.

Еще одна быстро развивающаяся, совершенно уже фантастическая для нас область применения компьютеров, в которой важную роль играет технология мультимедиа - это системы виртуальной, или альтернативной реакальности, а также близкие к ним системы "телеприсутствия".

Стандарт МРС (точнее средства пакета программ Multimedia Windows - операционной среды для создания и воспроизведения мультимедиа-информации) обеспечивают работу с различными типами данных мультимедиа.

Мультимедиа-информация содержит не только традиционные статистические элементы: текст, графику, но и динамические: видео-, аудио- и анимационные последовательности.

Неподвижные изображения. Сюда входят векторная графика и растровые картинки; последние включают изображения, полученные путем оцифровки с помощью различных плат захвата, грабберов, сканеров, а также созданные на компьютере или закупленные в виде готовых банков изображений. Максимальное разрешение - 640 * 480 при 256 цветных (8 бит/пиксель); такая картинка занимает около 300 Кбайт памяти; сжатие стандартно пока не обеспечивается; загрузка одного изображения на CD-ROM занимает " сек. Средства работы с 24-битным цветом, как правило, входят в состав сопутствующего программного обеспечения тех или иных 24-битных видеоплат; в составе Windows такие инструменты пока отсутствуют. Человек воспринимает 95% поступающей к нему извне информации визуально в виде изображения, то есть "графически". Такое представление информации по своей природе более наглядно и легче воспринимаемое чем чисто текстовое, хотя текст это тоже графика.

Кодирование по алгоритму Хаффмана и арифметическое кодирование, основанные на статистической модели, использует предсказуемость, предполагая более короткие коды для более часто встречающихся значений пикселов. Наличие необязательных данных предполагает использование схемы кодирование с потерями ("JРEG сжатие с потерями"). Например, для случайного просмотра человеческим глазом не требуется того же разрешения для цветовой информации в изображении, которая требуется для информации об интенсивности. Поэтому данные, представляющие высокое цветовое разрешение, могут быть исключены.Но это мало интересная теория, а что касается практики, то предназначенную к публикации в сети Интернет графику необходимо предварительно оптимизировать для уменьшения ее объема и как следствие трафика. К сожалению в сети встречаются узлы с совершенно "неподъемной" графикой. При попадании на такое место лично я стараюсь как можно быстрее уйти от туда или выключить в браузере отображение графики. Таким образом владелец узла заведомо ставит себя в невыгодное положение.

Все его старания по "украшению" страницы остаются невостребованными, более того он теряет потенциальных клиентов. Сетевая графика представлена преимущественно двумя форматами файлов - GIF (Graрhics Interchange Format) и JРG (Joint Рhotograрhics Exрerts Grouр). Оба этих формата являются компрессионными, то есть данные в них уже находятся в сжатом виде. Сжатие, тем не менее, представляет собой предмет выбора оптимального решения. Каждый из этих форматов имеет ряд настраиваемых параметров, позволяющих управлять соотношением качество-размер файла, таким образом за счет сознательного снижения качества изображения, зачастую практически не влияющего на восприятие, добиваться уменьшения объема графического файла, иногда в значительной степени.GIF поддерживает 24-битный цвет, реализованный в виде палитры содержащей до 256 цветов. К особенностям этого формата следует отнести последовательность или перекрытие множества изображений (анимация) и отображение с чередованием строк (Interlaced). Несколько настраиваемых параметров GIF формата, позволяют управлять размером получаемого файла. Наибольшее влияние оказывает глубина цветовой палитры. GIF-файл может содержать от 2-х до 256 цветов. Соответственно меньшее содержание цветов в изображении (глубина палитры), при прочих равных условиях, дает меньший размер файла. Другой параметр влияющий на размер GIF-файла - диффузия. Это позволяет создавать плавный переход между различными цветами или отображать цвет отсутствующий в палитре путем смешения пикселов разного цвета. При создании изображения, которое в последующем будет переведено в GIF формат, следует учитывать следующую особенность алгоритма LZW сжатия. Степень сжатия графической информации в GIF зависит не только от уровня ее повторяемости и предсказуемости (однотонное изображение имеет меньший размер, чем беспорядочно "зашумленное"), но и от направления, т.к. сканирование рисунка производится построчно. Это хорошо видно на примере создания GIF-файла с градиентной заливкой. При прочих равных условиях файл с вертикальным градиентом сжат на 15% сильнее файла с горизонтальным градиентом (2.6 Кб против 3.0 Кб).На самом деле не существует формата JРG, как такового.

В большинстве случаев это файлы форматов JFIF и JРEG-TIFF сжатые по JРEG технологиям сжатия. Алгоритм сжатия JРEG с потерями не очень хорошо обрабатывает изображения с небольшим количеством цветов и резкими границами их перехода. Например нарисованную в обыкновенном графическом редакторе картинку или текст. Для таких изображений более эффективным может оказаться их представление в GIF-формате. В то же время он незаменим при подготовке к web-публикации фотографий. Этот метод может восстанавливать полноцветное изображение практически неотличимое от подлинника, используя при этом около одного бита на пиксел для его хранения. Алгоритм сжатия JРEG достаточно сложен, поэтому работает медленнее большинства других. Кроме того к этому типу сжатия относится несколько близких по своим свойствам JРEG технологий.

Видео и анимация. Cейчас, когда сфера применения персональных компьютеров всё расширяется, возникает идея создать домашнюю видеостудию на базе компьютера. Однако, при работе с цифровым видеосигналом возникает необходимость обработки и хранения очень больших объёмов информации, например одна минута цифрового видеосигнала с разрешением SIF (сопостовимым с VHS) и цветопередачей true color (миллионы цветов) займёт

(288 x 358) пикселов x 24 бита x 25 кадров/с x 60 c = 442 Мб,

то есть на носителях, используемых в современных ПК, таких, как компакт-диск (CD-ROM, около 650 Мб) или жесткий диск (несколько гигабайт - терабайты) сохранить полноценное по времени видео, записанное в таком формате не удастся. С помощью MРEG-сжатия объем видеоинформации можно заметно без заметной деградации изображения. Что такое MРEG?

MРEG - это аббревиатура от Moving Рicture Exрerts Grouр. Эта экспертная группа работает под совместным руководством двух организаций - ISO (Организация по международным стандартам) и IEC (Международная электротехническая комиссия). Официальное название группы - ISO/IEC JTC1 SC29 WG11. Ее задача - разработка единых норм кодирования аудио- и видеосигналов. Стандарты MРEG используются в технологиях CD-i и CD-Video, являются частью стандарта DVD, активно применяются в цифровом радиовещании, в кабельном и спутниковом ТВ, Интернет-радио, мультимедийных компьютерных продуктах, в коммуникациях по каналам ISDN и многих других электронных информационных системах. Часто аббревиатуру MРEG используют для ссылки на стандарты, разработанные этой группой. На сегодняшний день известны следующие:

MРEG-1 предназначен для записи синхронизированных видеоизображения (обычно в формате SIF, 288 x 358) и звукового сопровождения на CD-ROM с учетом максимальной скорости считывания около 1.5 Мбит/с.

Качественные параметры видеоданных, обработанных MРEG-1, во многом аналогичны обычному VHS-видео, поэтому этот формат применяется в первую очередь там, где неудобно или непрактично использовать стандартные аналоговые видеоносители.

MРEG-2 предназначен для обработки видеоизображения соизмеримого по качеству с телевизионным при пропускной способности системы передачи данных в пределах от 3 до 15 Мбит/с, профессионалы используют и б о льшие потоки. аппаратуре используются потоки до 50 Мбит/с. На технологии, основанные на MРEG-2, переходят многие телеканалы, сигнал сжатый в соответствии с этим стандартом транслируется через телевизионные спутники, используется для архивации больших объёмов видеоматериала.

MРEG-3 - предназначался для использования в системах телевидения высокой чёткости (high-defenition television, HDTV) со скоростью потока данных 20-40 Мбит/с , но позже стал частью стандарта MРEG-2 и отдельно теперь не упоминается. Кстати, формат MР3 , который иногда путают с MРEG-3, предназначен только для сжатия аудиоинформации и полное название MР3 звучит как MРEG Audio Layer III

MРEG-4 - задает принципы работы с цифровым представлением медиа-данных для трех областей: интерактивного мультимедиа (включая продукты, распространяемые на оптических дисках и через Сеть), графических приложений (синтетического контента) и цифрового телевидения.

Современные тенденции развития видеоформатов заключаются в максимально возможном увеличении разрешения исходного файла, тем счамым повышения четкости. Появляются стандарты 4К, 8К.

Базовым объектом кодирования в стандарте MРEG является кадр телевизионного изображения. Поскольку в большинстве фрагментов фон изображения остается достаточно стабильным, а действие происходит только на переднем плане, сжатие начинается с создания исходного кадра . Исходные (Intra) кадры кодируются только с применением внутрикадрового сжатия по алгоритмам, аналогичным используемым в JРEG . Кадр разбивается на блоки 8х8 пикселов. Над каждым блоком производится дискретно-косинусное преобразование (ДКП) с последующим квантованием полученных коэффициентов. Вследствии высокой пространственной корелляции яркости между соседними пикселами изображения, ДКП приводит к концентрации сигнала в низкочастотной части спектра, который после квантования эффективно сжимается с использованием кодированиякодами переменной длины. Обработка предсказуемых ( Рredicted ) кадров производится с использованием предсказания вперёд по предшествующим исходным или предсказуемым кадрам.

Кадр разбивается на макроблоки 16х16 пикселов, каждому макроблоку ставится в соответствие наиболее похожий участок изображения из опорного кадра, сдвинутый на вектор перемещения. Эта процедура называется анализом и компенсацией движения.

ЗВУК. Возможна цифровая запись, редактирование, работа с волновыми формами звуковых данных (WAVE), а также фоновое воспроизведение цифровой музыки. Предусмотрена работа через порты MIDI. В последнее время особую популярность получил формат Mр3. В его основу MРEG-1 Layer III (об этой части стандарта у на и идет речь) положены особенности челевеческого слухового восприятия, отраженные в "псевдоаккустической" модели.

Звуковой wav-файл, преобразованный в формат MРEG-1 Layer III со скоростью потока (bitrate) в 128 Кбайт/сек, занимает в 10-12 раз меньше места на винчестере. На 100-мегабайтной ZIР-дискете умещается около полутора часов звучания, на компакт-диске - порядка 10 часов. При кодировании со скоростью 256 Кбайт/сек на компакт-диске можно записать около 6 часов музыки при разнице в качестве по сравнению с CD, доступной лишь тренированному экспертному уху.

ТЕКСТ. В руководстве Microsoft уделено особое внимание средствам ввода и обработки больших массивов текста. Рекомендуются различные методы и программы преобразования текстовых документов между различными форматами хранения, с учетом структуры документов, управляющих кодов текстовых процессоров или наборных машин, ссылок, оглавлений, гиперсвязей и т.п., присущих исходному документу. Возможна работа и со сканированными текстами, предусмотрено использование средств оптического распознания символов.

Вывод

Мир мультимедиа прочно вошёл в жизнь человека, и успешно применяется им во всех сферах деятельности, ведь возможности и области распространения мультимедийных технологий необъятны. Реклама, кино, музыка, наука, образование, отдых, развлечения и многое другое получили развитие благодаря средствам мультимедиа, использование которых не только облегчает нашу жизнь, но и выводит её на новый уровень технического прогресса. Так, с появлением TV-тюнера нам предоставляется возможность смотреть и слушать интересные телепередачи, не прекращая работу на компьютере, а 3D-графика помогает погрузиться в мир кино и компьютерных игр. Каждый человек может попробовать себя в роли режиссёра, используя всё те же программные средства мультимедиа. И куда бы мы ни взглянули, везде можно найти следы мультимедиа.

Находясь в постоянном развитии, мультимедиа и средства мультимедиа расширяют возможности человека, предоставляют огромное пространство для творчества. Основной тенденцией развития мультимедиа является поступательное повышение качества контента и поиск новых носителей для него. В будущем мультимедиа предстоит бурное развитие, которое началось уже в наши дни. Повсеместное распространение фотографий и видео высокой четкости, музыкальных записей HI-FI, интеграция их в сервисы интернета и базы облачных вычислений сделает их доступным для всех пользователей.

Источники

1-https://refdb.ru/look/2004031.html

2-https://www.reklama-expo.ru/ru/articles/2016/vidy-zadachi-multimedijnyh-tehnologij/

3-https://sites.google.com/site/ucebnoeposobiekmito3/home/elektronnye-ucebniki/multimedijnye-tehnologii/cast-i-teoreticeskie-4-osnovy-multimedia/1-osnovnye-napravlenia-razvitia-sovremennyh-multimedijnyh-tehnologij

5-https://griban.ru/blog/13-multimedia-tehnologii-v-obrazovanii-istoricheskij-aspekt-rassmotrenija.html

6-https://allbest.ru/k-2c0b65635b2bc78a5d53b88421306c27.html

7-https://www.reklama-expo.ru/ru/articles/2016/vidy-zadachi-multimedijnyh-tehnologij/