Исследовать статистически случайную величину X – прочность (разрывная нагрузка), мН, пряжи линейной плотности 18,5 текс. 141 174 235 155 181 202 185 218 283 268 253 294 276 309 281 262 272 236 257 240
Теория вероятностей | ||
Решение задачи | ||
Выполнен, номер заказа №16412 | ||
Прошла проверку преподавателем МГУ | ||
Напишите мне в чат, пришлите ссылку на эту страницу в чат, оплатите и получите файл! |
Закажите у меня новую работу, просто написав мне в чат! |
Исследовать статистически случайную величину X – прочность (разрывная нагрузка), мН, пряжи линейной плотности 18,5 текс. Для этого произведена выборка объема n = 40. Результаты испытаний приведены в таблице.
Решение
Построим вариационный ряд – выборку в порядке возрастания: Найдем размах выборки Число интервалов 𝑁, на которые следует разбить интервал значений признака, примем равным Рассчитаем шаг (длину частичного интервала) ℎ по формуле: Округление шага производится, как правило, в большую сторону. Таким образом, принимаем За начало первого интервала принимаем такое значение из интервала чтобы середина полученного интервала оказалась удобным для расчетов числом. В нашем случае за нижнюю границу интервала возьмём 140. В результате получим следующие границы интервалов: Подсчитаем частоту каждого интервала, то есть число вариант, попавших в этот интервал. Варианты, совпадающие с границами частичных интервалов, включают в правый интервал. Относительные частоты определим по формуле: Номер интервала Интервал Середина интервала Частота 𝑚 Относительная частота Найдем оценки вариации: выборочное среднее, дисперсию, среднее квадратическое отклонение, коэффициент асимметрии и эксцесс. Выборочное среднее вычисляется по формуле: Выборочная дисперсия вычисляется по формуле: Среднее квадратическое отклонение равно: Исправленная дисперсия: Исправленное среднее квадратическое отклонение равно: Определим центральный момент третьего порядка: Коэффициент асимметрии равен: Определим центральный момент четвертого порядка: Эксцесс равен: По асимметрии распределение значительно отличается от нормального, а по эксцессу – незначительно. Выдвинем и проверим с уровнем значимости гипотезу о нормальном законе распределения генеральной совокупности. Критерий Пирсона применяется при условии, что все группы ряда включают частоты не меньшие 5 (т.е.). Если частота группы ряда менее 5, то эту группу следует объединить с соседней. Вычислим вероятности попаданий СВ в каждый интервал Интервалы Получили Число степеней свободы По таблице при уровне значимости находим Так как то нет оснований отвергать гипотезу о нормальном распределении при заданном уровне значимости. Построим полигон частот и теоретическую кривую Гаусса
Похожие готовые решения по теории вероятности:
- Для дискретной случайной величины в результате 40 независимых наблюдений получена выборка. Требуется: а) составить дискретный вариационный ряд
- Контролер ОТК проверил срок службы 40 электрических ламп и получил следующие данные (в часах): 476,4 599,1 456 584,9 460,9 488,1 642,7 564,7 477,2 499,6 485 541,5 515,2 421,5 733,1 574,6 443 406,7 468
- Измерение роста 40 из прибывших в часть новобранцев дало следующие результаты (в сантиметрах): 160 185,2 182,4 169,5 143,7 154,2 165,4 158,8 170,3 170,6 161,9 158,7 185,4 161,7 174,3 166,2 171 179,4 1
- По имеющимся данным требуется: 1. Построить статистический ряд распределения, изобразить получившийся ряд, графически с помощью полигона Вариант 2
- Управляющий филиалом банка собрал данные о размере открытых вкладов (в тыс. рублей): 24 41 39 38 28 33 17 40 20 38 20 11 43 24 38 23 22 29 49 12 36 23 35 40 20 29 38 23 40 49 47 34 48 40 35 31 30 47
- Для 40 магазинов одной торговой сети, находящихся в разных населенных пунктах, определена стоимость корзины продуктов первой необходимости
- Исследовать статистически случайную величину 𝑋 – прочность (разрывная нагрузка), мН, пряжи линейной плотности 18,5 текс. 132 200 225 163 149 171 160 205 163 194 184 124 119 186 152 205 180 155 199 22
- Исследовать статистически случайную величину X – прочность (разрывная нагрузка), мН, пряжи линейной плотности 18,5 текс. 161 206 212 245 263 275 231 218 269 314 208 226 189 296 284 311 318 272 240 279
- Используя критерий Пирсона, при уровне значимости 0, 05 проверить, согласуется ли гипотеза о нормальном распределени
- Исследовать статистически случайную величину X – прочность (разрывная нагрузка), мН, пряжи линейной плотности 18,5 текс. 161 206 212 245 263 275 231 218 269 314 208 226 189 296 284 311 318 272 240 279
- Измерены 100 обработанных деталей. Отклонения от заданного размера приведены в таблице. На уровне зна
- По данным задачи 1, используя 𝜒 2 -критерий Пирсона, на уровне значимости 𝛼 = 0,05 проверить гипотезу о том, что слу