Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Переменный электрический ток:

До сих пор рассматривались электрические цепи, содержащие в различных сочетаниях резисторы, конденсаторы и катушки, с источником постоянного тока либо без него. Теперь рассмотрим подключение таких цепей к источнику переменного тока.

Пусть источник тока создает переменное гармоническое напряжение (рис. 194)
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Согласно закону Ома сила тока на участке цепи, содержащем только резистор сопротивлением R, подключенный к этому источнику, изменяется со временем также по синусоидальному закону:
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами
где Катушка индуктивности в цепях переменного тока - формулы и определение с примерами — амплитудное значение силы тока в цепи.

Как видно, сила тока в такой цепи также меняется с течением времени по синусоидальному закону.

Величины Катушка индуктивности в цепях переменного тока - формулы и определение с примерами  называются амплитудными значениями напряжения и силы тока. Значения напряжения U(t) и силы тока I(t), зависящие от времени, называют мгновенными.

Зная мгновенные значения U(t) и I(t), можно вычислить мгновенную мощность Катушка индуктивности в цепях переменного тока - формулы и определение с примерами которая, в отличие от цепей постоянного тока, изменяется с течением времени.

С учетом зависимости силы тока от времени в цепи перепишем выражение для мгновенной тепловой мощности на резисторе в виде
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Поскольку мгновенная мощность меняется со временем, то использовать эту величину в качестве характеристики длительно протекающих процессов на практике крайне неудобно.

Перепишем формулу для мощности по-другому:
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами
Первое слагаемое не зависит от времени. Второе слагаемое — переменная составляющая — функция косинуса двойного угла и ее среднее значение за период колебаний равно нулю (см. рис. 194).

Поэтому среднее значение мощности переменного электрического тока за длительный промежуток времени можно найти по формуле
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами
Это выражение позволяет ввести действующие (эффективные) значения силы тока и напряжения, которые используются в качестве основных характеристик переменного тока.

Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.
Поскольку для постоянного тока Катушка индуктивности в цепях переменного тока - формулы и определение с примерами то с учетом ранее полученного выражения для среднего значения мощности переменного тока действующее значение силы тока  

Катушка индуктивности в цепях переменного тока - формулы и определение с примерами
Аналогично можно ввести действующее значение и для напряжения
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе (см. рис. 194).
Таким образом, резисторы оказывают сопротивление как постоянному, так и переменному току, при этом в обоих случаях в них происходит превращение электрической энергии во внутреннюю. Вследствие этого сопротивление резисторов R получило название активного или омического сопротивления.

Катушка индуктивности в цепях переменного тока

Реальный соленоид (катушка индуктивности) обладает активным сопротивлением R и индуктивностью L. В цепях постоянного тока главную роль играет его сопротивление R, тогда как в цепях переменного тока — его индуктивность L.

Рассмотрим физические процессы, происходящие в идеальной катушке, у которой отсутствует активное сопротивление (R=0), при включении ее в цепь переменного тока.

В катушке индуктивностью L переменный ток Катушка индуктивности в цепях переменного тока - формулы и определение с примерами вызывает появление ЭДС самоиндукции:
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами где Катушка индуктивности в цепях переменного тока - формулы и определение с примерами — амплитудное значение ЭДС самоиндукции (рис. 195).

Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

При возрастании силы тока ЭДС самоиндукции согласно правилу Ленца будет препятствовать его увеличению. Для идеальной катушки, активное сопротивление которой равно нулю (R=0), согласно закону Ома для полной цепи Катушка индуктивности в цепях переменного тока - формулы и определение с примерами где U(t) напряжение на концах катушки.

Следовательно, в любой момент времени внешнее напряжение на концах катушки равно по модулю и противоположно по знаку ЭДС самоиндукции в катушке:
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Сравнивая выражения для мгновенных значений силы тока I(t) и напряжения U(t), видим, что для их амплитудных значений можно записать закон Ома в виде Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Величину Катушка индуктивности в цепях переменного тока - формулы и определение с примерами называют индуктивным сопротивлением катушки. Оно пропорционально индуктивности катушки и частоте переменного тока в цепи  Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Обратите внимание на то, что фазы колебаний силы тока и напряжения не совпадают. Наличие сдвига фаз означает, что мгновенное значение напряжения U на катушке индуктивности опережает мгновенное значение силы I переменного тока по фазе на Катушка индуктивности в цепях переменного тока - формулы и определение с примерами Такой сдвиг фаз между колебаниями силы тока и напряжения характерен в целом для цепей переменного тока, содержащих элементы, обладающие индуктивностью.
Закон Ома для цепи переменного тока, содержащей только катушку индуктивности, выполняется и для действующих значении силы тока Катушка индуктивности в цепях переменного тока - формулы и определение с примерами и напряжения Катушка индуктивности в цепях переменного тока - формулы и определение с примерами так как Катушка индуктивности в цепях переменного тока - формулы и определение с примерами тогда Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Таким образом, если в цепь переменного тока включена катушка индуктивности, то закон Ома выполняется для амплитудных и действующих значений силы тока и напряжения, но не выполняется для их мгновенных значений, так как мгновенные значения силы тока и напряжения не совпадают по фазе (см. рис. 195).

Мгновенная мощность, потребляемая катушкой индуктивности от источника переменного тока, определяется по формуле
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Поскольку среднее за период значение функции Катушка индуктивности в цепях переменного тока - формулы и определение с примерами равно нулю, то и средняя мощность за период также равна нулю:
Катушка индуктивности в цепях переменного тока - формулы и определение с примерами

Как видно из рисунка 195, цепь с идеальной катушкой индуктивности в течение первой и третьей четвертей периода работает в режиме потребителя, запасая энергию магнитного поля Катушка индуктивности в цепях переменного тока - формулы и определение с примерами в катушке, а в течение второй и четвертой — в режиме генератора, возвращая источнику запасенную энергию.

Поскольку потерь энергии в этом случае не происходит, то индуктивное сопротивление называют реактивным.