Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Колебания материальной точки в теоретической механике

Содержание:

Колебания материальной точки:

К исследованию колебаний одной материальной точки могут быть сведены многие технические задачи

В качестве примера интегрирования дифференциальных уравнений движения рассмотрим колебания материальной точки. Еще совсем недавно изучение колебаний не входило в программу курсов теоретической механики высших учебных заведений. Но необходимость создания новых методов расчета всевозможных машин и различных сооружений, обладающих большой прочностью при небольшом весе, а также необходимость увеличения скоростей и производигельности машин стимулировали быстрое развитие раздела динамики, называемого теорией колебаний. Раздел, посвященный колебаниям, включен теперь во все программы по теоретической механике. 

C основами явлений колебаний удобно ознакомиться сперва на примере, колебания одной материальной точки. Изучение вибраций одной материальной точки интересно также и потому, что к вибрации точки могут быть непосредственно приведены многие практически важные задачи.

Пусть точка M массы m притягивается к точке О силой F, пропорциональной (рис. 162) расстоянию ОМ, а начальная скорость точки M направлена по прямой OM или равна нулю. В таком случае точка M будет двигаться по прямолинейной траектории, вдоль которой мы направим ось х. Начало координат возьмем в точке О (в равновесном положении). Сила F как бы стремится вернуть точку M в равновесное положение О, за что ее называют восстанавливающей силой. Примером такой силы могут служить сила упругости стержня, совершающего малые колебания, или равнодействующая сил веса G и натяжения T нити при малых колебаниях маятника и т. и. Чем больше координата х, тем больше величина этой силы. Вместе с тем сила (точнее говоря, ее проекция на ось Ох) по знаку всегда противоположна знаку координаты х. В самом деле, если точка M находится справа от x начала координат О, то координата х положительна, а сила направлена в отрицательную сторону, и наоборот, если координата х отрицательна, то восстанавливающая сила направлена в положительную сторону. Обозначив коэффициент пропорциональности между силой и расстоянием через с (причем с > 0), выразим восстанавливающую силу формулой

F= — сх.        (131)

Колебания материальной точки в теоретической механике
Рис. 162

Пусть на точку M во время ее движения действует сила сопротивления R, пропорциональная скорости точки и направленная против скорости. Таким образом, если точка M движется вправо (х > 0), то сила сопротивления направлена влево (R < 0), и, наоборот, если х < 0, то R > 0. Обозначив коэффициент пропорциональности через а (причем а > 0), мы определим силу сопротивления (выражаясь точнее, ее проекцию на ось Ох) формулой

R = — ах.        (132)

Кроме того, пусть на точку M действует возмущающая сила Р, т. е. некоторая дополнительная сила, вызывающая изменение движения, обусловленного основной силой F. Возмущающая сила направлена по прямолинейной траектории точки M и, периодически изменяя свою величину и знак, раскачивает точку M то в ту, то в другую сторону. Мы ограничимся рассмотрением простейшего случая и предположим, что сила P изменяется с течением времени по закону синуса:

P = H sin pt.        (133)

Очевидно, что сила P изменяется в пределах от до —Н. Пример такой силы приведен в задаче № 110.

Напишем дифференциальное уравнение движения точки M:

Колебания материальной точки в теоретической механике

Разделив обе части уравнения на т, введем обозначения

Колебания материальной точки в теоретической механике        (134)

и перенесем члены, содержащие х или его производные, влево:

х + 2nx + k2x =h sin pt.    (135)

Мы имеем неоднородное линейное дифференциальное уравнение с постоянными коэффициентами. Общее решение такого уравнения складывается из: 1) общего решения соответствующего однородного уравнения, т. е. уравнения (135) без правой части, и какого-либо частного решения неоднородного уравнения (135).

Для интегрирования уравнения

х + 2nx + k2x = 0

составим характеристическое уравнение

z2 + 2nz + k2 = 0.

Если n < k («малое сопротивление»), то характеристическое уравнение имеет комплексные корни:

Колебания материальной точки в теоретической механике

и общее решение однородного уравнения имеет вид

Колебания материальной точки в теоретической механике    (136)

где C1 и C2 — постоянные интегрирования. Эти постоянные можно определить лишь после того, как будет получено частное решение неоднородного уравнения (135).

Частное решение неоднородного уравнения (135) при p≠k будем искать вида

х= В sin (pt — δ).

Подберем такие постоянные В и δ, при которых написанное выражение удовлетворяет уравнению (135). Найдем первую и вторую производные от х по времени:

x = Bp cos (pt— δ); х — — Bp2 sin (pt— δ)

и подставим в (135) написанное выражение х и его производных:

— Bp2 sin (pt — δ) + 2nBp cos (pt — δ) + k2B sin (pt — δ) = h sin pt.

Преобразуем правую часть этого равенства:

h sin pt = h sin (pt — δ +δ) = h sin (pt — δ) cos ∂ + h cos (pt — δ) sin δ.

Перенеся все члены влево и собирая члены, содержащие sin(pt— δ) и cos (pt — δ), получим

[В (k2—p2)-h cos δ] sin (pt — δ) + (2Bnp-hsin δ) cos (pt — δ) = O.

Это равенство обращается в тождество, если

В (k2— р2) = h cos δ; 2Bnp = h sin δ,

или

Колебания материальной точки в теоретической механике    (137)

Складывая общее решение (136) однородного уравнения с найденным частным решением неоднородного уравнения, получим общее решение неоднородного уравнения (135) в таком виде:

Колебания материальной точки в теоретической механике

Колебания материальной точки в теоретической механике    (138)

Прежде чем исследовать сложное колебательное движение точки под действием сил F, R и P, выражаемое уравнением (138), рассмотрим более простые движения, которые точка совершала' бы под действием одной силы F или же под действием силы F и какой-либо- одной из двух остальных R или Р.

Точка, движущаяся по прямой, совершает под действием восстанавливающей силы гармоническое колебание

Свободные колебания без сопротивления

Предположим, что на материальную точку M (см. рис. 162 на стр. 274) действует только восстанавливающая сила (131), сила же сопротивления (132) и возмущающая сила (133) равны нулю. Пусть начальная скорость точки M направлена по прямой MO или равна нулю. В таком случае точка M будет двигаться по прямой OM (по оси Ох), дифференциальное и кинематическое уравнения ее движения мы получим, положив в (135) и в (138) n и h равными нулю. В самом деле, если сила сопротивления R=O, то, следовательно, α = 0, потому что R=— ах и х переменная величина. Если же a = 0, то равно нулю и n, которое согласно (134) равно Колебания материальной точки в теоретической механике. Аналогично, равенство нулю возмущающей силы означает, что равны нулю H и h.

В таком случае уравнение (135) принимает вид

х + k2x = 0,    (139)

а его интеграл

х = C1 cos kt + C2sin kt.     (139/)

Этому уравнению придадим более удобный вид, для чего выразим, постоянные интегрирования C1 и C2 через две другие постоянные величины А и β, однозначно связанные с C1 и C2 соотношениями

C1 = A sinβ и C2 = A cos β.    (140")

Тогда

x = A sin (kt+ β).    (140)

Это уравнение является одним из важнейших уравнений в теории колебаний и описывает наиболее простое колебательное движение, называемое гармоническим. Еще в древности было известно, что если некоторая точка M' (рис. 163) равномерно движется по окружности радиуса О'М' — А со скоростью kA, то проекция M этой точки на какую-либо ось Ох, лежащую в плоскости окружности, совершает гармонические колебания. Мы воспользуемся рис. 163, чтобы нагляднее ознакомить читателя с параметрами гармонического колебания. 

Колебания материальной точки в теоретической механике
Рис. 163

Если точка M' опишет полную окружность, то точка M' совершит одно полное колебание.

Время одного полного колебания точки M (или, что то же, время,в течение которого точка M' описывает одну полную окружность) называют периодом -τ0 колебаний. 

Угловая скорость k, с которой поворачивается радиус-вектор Колебания материальной точки в теоретической механике при равномерном движении точки M', равна циклической, круговой или угловой частоте колебаний точки М. Эту величину обычно коротко называют частотой, хотя, как будет видно из дальнейшего, оба понятия не вполне идентичны.

Период и угловая частота связаны простым соотношением, которое становится очевидным, если учесть, что τ0—это время, в течение которого Колебания материальной точки в теоретической механике, вращаясь с угловой скоростью k, поворачивается на 2π:

Колебания материальной точки в теоретической механике и Колебания материальной точки в теоретической механике     (141)

или ввиду (134)

Колебания материальной точки в теоретической механике     (142)

Период имеет размерность времени

[τ] = T1.

Частота имеет размерность угловой скорости

[k] = T1.

Из (141) видно, что круговая частота k равна числу полных колебаний, совершаемых в 2π сек. Частота ν колебаний пропорциональна круговой (циклической, угловой) частоте k и равнаКолебания материальной точки в теоретической механике. В технике и в физике частоту обычно измеряют в герцах (гц). 1 гц — частота, равная одному полному колебанию (циклу) в секунду. Иначе говоря, герц есть частота такого периодического процесса, который повторяется каждую секунду. Обратите внимание на то, что частота и период гармонических колебаний зависят от массы точки и коэффициента с восстанавливающей силы и не зависят от начальных данных.

Максимальное отклонение А точки M от среднего (равновесного) положения О в ту или в другую сторону (или, что то же, радиус круговой траектории точки М’) называют амплитудой. Амплитуду измеряют в единицах длины:

[A] = T1.

Аргумент синуса (kt + β) называют фазой колебания, a β—начальной фазой. Физический смысл фазы колебания выявляется при сравнении двух колебаний с одинаковыми частотами, но с разными начальными фазами. Колебание с фазой (kt+ β) опережает колебание с фазой kt, а колебание с фазой (kt — β) отстает от него (разумеется, при положительном β).

Напомним, что А и β являются постоянными интеграции, а следовательно, их определяют по начальным данным. Пусть в начальное мгновение t = 0, x=x0 и x=x0. Продифференцировав (140) по времени, получим х = Ak cos (kt + β), и подставляя начальные значения:

х0 =  A sinβ и х0 = Ak cos β,

получим 

Колебания материальной точки в теоретической механике      (143)

Из тех же равенств можно определить и начальную фазу Колебания материальной точки в теоретической механике. Амплитуда и начальная фаза зависят от частоты и от начальных данных.

Задача №1

Груз весом 2 T подвешен на тросе (рис. 164). При равномерном спуске груза со скоростью υ = 5м/сек произошла неожиданная задержка верхнего конца троса вследствие защемления троса в обойме блока. Пренебрегая весом троса, определить его наибольшее натяжение при последующих колебаниях груза, если коэффициент жесткости троса с = 4 T/см.

Решение. Примем следующие единицы измерений: длина—в см, время — в сек, сила—в Т. Рассмотрим движение груза. На груз действуют две силы: вертикально вниз вес груза 2T, вертикально вверх — натяжение троса. Груз спускался равномерно, следовательно, до защемления натяжение троса равнялось весу груза. В этом равновесном положении его застала авария. После защемления троса груз не остановился мгновенно. В это мгновение он имел скорость 5 м/сек и продолжал опускаться. Но по мере опускания груза сила натяжения троса возрастала от своего начального значения 2T. Ускорение груза направлено по силе и пропорционально ей. Поэтому опускание груза было замедленным и в некоторое мгновение скорость груза, перейдя через нуль, стала направленной вверх, в направлении силы и ускорения. Движение вверх было ускоренным, но по мере того как груз поднимался, растяжение троса, а следовательно, и его натяжение уменьшались, а потому уменьшалось ускорение груза, скорость же продолжала увеличиваться до момента прохождения через равновесное положение. После этого груз, набрав скорость, продолжал подниматься, ио замедленно, так как натяжение троса стало меньше силы веса и равнодействующая приложенных к грузу сил была направлена вниз. Затем скорость стала равной нулю, груз начал падать вниз, натяжение троса возрастало и движение повторялось снова неопределенное количество раз.

Начало О системы отсчета выберем обязательно в равновесном положении груза, относительно которого происходят колебания, направив ось Ox вертикально вниз (рис. 164). В начальное мгновение (в момент защемления троса) было: x0= 0; x0= 500 см/сек. Квадрат круговой частоты определим по (134). После подстановки в формулу Колебания материальной точки в теоретической механике имеем Колебания материальной точки в теоретической механике. Определим амплитуду по формуле (143):

Колебания материальной точки в теоретической механике

Таким образом, при равновесном положении груза натяжение троса равно 2T; когда же груз опустился на одну амплитуду, то трос растянулся еще на 11,28 см, а при жесткости троса в 4 T/см натяжение его увеличилось еще на 45,12 Т.

Ответ. 47,1 T.

Натуральный логарифм отношения двух последующих амплитуд затухающих колебаний называют логарифмическим декрементом

Свободные колебания с сопротивлением

Движение под действием восстанавливающей силы и силы сопротивления будем называть свободными колебаниями. Мы только что убедились, что свободные колебания без сопротивления являются гармоническими и, раз возникнув, они повторялись бы до тех пор, пока их не прекратила бы или не изменила бы какая-нибудь внешняя сила. Пусть возмущающая сила отсутствует (P = 0, H = 0, h = 0), а на точку действуют силы F=-cx и R =—ах. Дифференциальное уравнение (135) движения точки M принимает вид

х + 2nx 4- k2x = 0,    (144)

а его интеграл получим, положив в (138) h=0:

Колебания материальной точки в теоретической механике

или, если воспользуемся соотношениями (140),

Колебания материальной точки в теоретической механике    (145)

Постоянные А и β определяют по начальным данным.

Наиболее существенное отличие уравнения (145) от уравнения (140), иначе говоря, наиболее существенное изменение в свободном колебании точки М, внесенное наличием силы сопротивления, заключается в множителе e-nt, который с течением времени непрерывно уменьшается, вследствие чего амплитуда Ae-nt колебаний с сопротивлением убывает по экспоненциальному закону, асимптотически приближаясь к нулю. Такое колебание называют затухающим.

Переходя к определению периода затухающих колебаний, обратим внимание на то, что вообще периодом периодического движения называют промежуток времени между двумя последовательными прохождениями точки (или системы) через одно и то же положение водном и том же направлении. В случае затухающих колебаний только равновесное положение удовлетворяет такому определению периода, через всякое же другое положение точка M (или любая система, совершающая затухающие колебания) проходит через неравные промежутки времени (см. рис. 165). Поэтому под периодом затухающих колебаний понимают промежуток времени τ1 между двумя последовательными прохождениями точки M (или системы) через положение равновесия в одинаковом направлении. В таком же смысле колебания, описываемые уравнением (145), могут быть названы изохронными. Период затухающих колебаний можно определить но формуле

Колебания материальной точки в теоретической механике    (146)

Проф. И. М. Бабаков в учебнике «Теория колебаний» рекомендует для практических расчетов более удобную формулу:

Колебания материальной точки в теоретической механике    (146/)

Сравнивая (141) и (146), мы видим, что сопротивление увеличивает период свободных колебаний, но незначительно.

Гораздо больше оно влияет на убывание амплитуд. Так, например, при n = 0,05 k сопротивления увеличивают период на 0,125%, а амплитуда за время одного полного колебания уменьшается более чем на 25%. На рис. 165 изображен график затухающих колебаний для случая n = 0,05 k, позаимствованный из «Лекций» проф. Е. Л. Николаи.

Отношение абсолютных значений двух последовательных амплитудных отклонений точки от равновесного положения называют коэффициентом затухания:

Колебания материальной точки в теоретической механике    (147)

Для характеристики быстроты убывания амплитуды удобнее пользоваться натуральным логарифмом коэффициента затухания, называемым логарифмическим декрементом колебаний:

Колебания материальной точки в теоретической механике    (147/)

На рис. 165 пунктиром изображены кривые, уравнения которых x= Ае-n и х = —Ae-nt. График затухающих колебаний расположен между этими двумя кривыми и поочередно их касается.

Задача №2

Маятник, масса которого равна 1 кг и период качания в безвоздушной среде τ0=l сек, заставили качаться вереде, сопротивляющейся но закону R =—2х н. Определить: 1) период затухающих колебаний маятника и 2) уменьшение амплитуды в течение трех периодов.

Решение. Определим параметры колебаний.

Круговая частота. Период τ0=l сек=Колебания материальной точки в теоретической механике , откуда k=2π = G,28.

Коэффициент α=2; m=1; 2n=Колебания материальной точки в теоретической механике, откуда n=l.

Период затухающих колебаний Колебания материальной точки в теоретической механике, или по (146'),
Колебания материальной точки в теоретической механике. Логарифмический декремент Колебания материальной точки в теоретической механике . Коэффициент затухания Колебания материальной точки в теоретической механике.

Отношение каждого максимального отклонения к последующему (через полпериода) равно коэффициенту затухания, следовательно, если амплитуду при первом размахе принять за 1, то следующие уменьшаются в отношении Колебания материальной точки в теоретической механике .

Под действием восстанавливающей и возмущающей сил точка совершает сложное колебание, являющееся результатом наложения трех гармонических колебаний: свободного, сопровождающего свободного и вынужденного

Вынужденные колебания без сопротивления

Пусть на точку М, движущуюся по оси Ох, действуют две силы — восстанавливающая F=— CX и возмущающая P =H sin pt, направленные также по оси Ох. Величина pt может быть названа фазой силы, постоянную р назовем круговой частотой возмущающей силы, а период этих изменений обозначим через τ. Действие сопротивления мы пока не учитываем, поэтому, положив в уравнении (135) n = 0, получим следующее дифференциальное уравнение вынужденных колебаний без сопротивления:

x+ k2x = h sin pt.    (148)

Чтобы найти решение этого уравнения, надо в (138) положить равным нулю не только n, но и δ, так как согласно (137) δ = 0 при n = 0. Имеем

Колебания материальной точки в теоретической механике

Определим постоянные. Если в начальное мгновение х = x0 и x = χ0, то

Колебания материальной точки в теоретической механике

и

Колебания материальной точки в теоретической механике    (149)

Первые два слагаемых описывают свободные колебания с частотой k. Воспользовавшись соотношениями (140"), эти два слагаемых можно представить в виде x1 = A sin (kt + β). Если в начальное мгновение х = х= 0, то эти колебания во все время действия возмущающей силы не возникают. Третье слагаемое

Колебания материальной точки в теоретической механике

— гармоническое колебание, происходящее с частотой k свободных колебаний, но с амплитудой, зависящей от возмущающей силы. Это колебание всегда, при любых начальных условиях, сопровождает вынужденные колебания и его называют свободным сопровождающим колебанием. Четвертое слагаемое

Колебания материальной точки в теоретической механике    (149/)

описывает вынужденные колебания. Таким образом, колебания точки являются результатом линейного наложения трех гармонических колебаний: 1) свободных, 2) сопровождающих свободных и 3) вынужденных (рис. 166):

Колебания материальной точки в теоретической механике    (149//)

Колебания материальной точки в теоретической механике
Рис. 166

На схеме (рис. 166) приведены только частоты этих колебаний, но разумеется, не изображены амплитуды и начальные фазы.

Вынужденные колебания происходят с частотой р, равной частоте возмущающей силы. Они не зависят от начальных данных.

Как видно из (143), для изменения амплитуды свободных колебаний достаточно изменить начальное отклонение или начальную скорость. Напротив, для изменения амплитуды вынужденных колебаний надо изменить возмущающую силу, что обычно бывает сопряжено с необходимостью преобразования конструкции.

Если частота р вынужденных колебаний меньше частоты k собственных (случай «малой» частоты), то амплитуда вынужденных колебанийКолебания материальной точки в теоретической механике, а фаза pt вынужденных колебаний совпадет
с фазой pt возмущающей силы. По если р > k (случай «большой» частоты), то выражение, написанное для А3, становится отрицательным, однако амплитуда не может быть отрицательной. Это кажущееся несоответствие объясняется тем, что при р > k фаза вынужденных колебаний противоположна фазе возмущающей силы и уравнение вынужденных колебаний имеет вид

Колебания материальной точки в теоретической механике

Резонанс

Если частоты собственных и вынужденных колебаний близки между собой, то амплитуды получаются очень большими. Напомним, что при интегрировании уравнения (135) мы положили p≠k. Если р= k, то дифференциальное уравнение (148) имеет вид

x-k2x = h sin kt    (148')

Будем искать частное решение вида

x= Bt cos kt.

Определив х =— 2Bk sin kt— Btk2 cos kt и подставив его вместе с х в дифференциальное уравнение, получим
2Bk sin kt = h sin kt,

откуда 

Колебания материальной точки в теоретической механике

Находим общее решение дифференциального уравнения движения:

Колебания материальной точки в теоретической механике

Дифференцируем по времени:

Колебания материальной точки в теоретической механике

Если в начальное мгновение x=x0 и x=x0, то

Колебания материальной точки в теоретической механике

и общее решение принимает вид

Колебания материальной точки в теоретической механике

или, полагая Колебания материальной точки в теоретической механике получим

Колебания материальной точки в теоретической механике    (148''')

Следовательно, и при равенстве частот движение точки состоит из трех колебательных движений, однако вынужденные колебания представлены непериодическим членом, в коэффициент которого входит множителем время. C течением времени это третье слагаемое, называемое вековым членом, безгранично растет по абсолютной величине. Размах вынужденных колебаний непрерывно растет по линейному закону. Это явление называется резонансом. График вынужденных колебаний при резонансе представлен на рис. 167.
Колебания материальной точки в теоретической механике

Рис. 167

Задача №3

Груз M подвешен в точке В к пружине AB (рис. 168), верхний конец А которой прикреплен к поступательно движущейся кулисе. Кривошип кулисного механизма имеет длину а = 0,02 м и вращается с угловой скоростью Колебания материальной точки в теоретической механике, вследствие чего точка А совершает гармонические колебания по закону хА =0,02 sin 7t м. Определить вынужденные колебания груза М, если его вес G = 3,6 н, а жесткость пружины с = 36 н/м.

Колебания материальной точки в теоретической механике
Рис. 168

Решение. Составим дифференциальное уравнение движения груза М. Начало координат выберем в точке, с которой центр тяжести груза совладал в момент начала движения (при t = 0), когда верхний конец А пружины, совершающей гармонические колебания вместе с кулисой, занимал свое среднее положение. При сделанном нами выборе начала отсчета (в равновесном положении груза) вес G = 3,6 н уравновешивался статическим натяжением пружины с λcr = 36 ∙ 0,1. Наличие этих двух взаимно уравновешенных сил эквивалентно их отсутствию, а потому мы можем их отбросить и в дальнейшем рассматривать движение центра тяжести груза лишь под действием натяжения пружины, обусловленного только ее динамической деформацией, т. е. только деформацией пружины при колебании груза около равновесного положения.

При t ≠ 0 положение центра тяжести груза определяется координатой х, получающейся от суммирования двух перемещений: динамической деформации пружины и перемещения a sin pt верхнего конца А пружины. Следовательно, динамическая деформация пружины равна разности перемещений ее нижнего конца В и верхнего конца А, т. е. равна х—α sin pt . Дифференциальное уравнение движения центра груза имеет вид

mx = — с (х—a sin pt).

Деля обе части уравнения на m и вводя обозначения Колебания материальной точки в теоретической механике и Колебания материальной точки в теоретической механике, придадим этому уравнению знакомый нам вид (148)

x + k2x = h sin pt,

где Колебания материальной точки в теоретической механике

Подставляя в (149'), находим вынужденные колебания груза.
Ответ. 0,04 sin 7t.

Задача №4

Статический прогиб рессор товарного вагона равен 5 см. Определить критическую скорость вагона, при которой начнется «галопирование» вагона, если на стыках рельсов вагон испытывает толчки, вызывающие вынужденные колебания на рессорах: длина рельсов равна 12 м.

Решение. Жесткость рессор Колебания материальной точки в теоретической механике, частота собственных колебаний

Колебания материальной точки в теоретической механике

Если поезд идет со скоростью υ см/сек, то вагон получает толчки на стыках через каждые Колебания материальной точки в теоретической механикесек. Таков период τ возмущающей силы. Частота возмущающей силы Колебания материальной точки в теоретической механике, откуда Колебания материальной точки в теоретической механике. Галопирование вагона произойдет при резонансе, т. е. при равенстве частот собственных и вынужденных колебаний. Подставляя в выражение, полученное для скорости, р = k = 14, найдем

Колебания материальной точки в теоретической механике

Чтобы выразить скорость в км/ч, умножим выраженную в см/ceκ скорость на 0,036.

Ответ. υ=96 км/ч.

Если к точке приложены восстанавливающая и возмущающая сила и сила сопротивления, то свободные колебания затухают и остаются только вынужденные

Влияние сопротивления на вынужденные колебания

Если на точку, кроме восстанавливающей и возмущающей сил, действует также и сила R сопротивления, то движение точки описывается дифференциальным уравнением (135) и его решением (138).

Первый член правой части (138) с возрастанием t стремится к нулю, и соответствующие ему колебания точки с течением времени затухают, поэтому ими можно пренебречь. Остаются только вынужденные колебания (рис. 169):

Колебания материальной точки в теоретической механике     (150)

Они происходят с частотой возмущающей силы, сопротивление не влияет на период вынужденных колебаний. Амплитуда не зависит от начальных условий и времени и не изменяется с течением времени.

Предположим, что возмущающая сила сохраняет свое максимальное значение Н. При равновесии под действием такой силы и восстанавливающей силы F =— сх точка M получила бы так называемое статическое отклонение

Колебания материальной точки в теоретической механике

Из этого соотношения найдем максимальное ускорение точки M под действием возмущающей силы: h=k2xст и, подставляя это значение h в выражение (150), выразим амплитуду вынужденных колебаний равенством

Колебания материальной точки в теоретической механике

Отношение частоты вынужденных колебаний к частоте собственных колебаний

Колебания материальной точки в теоретической механике                 (151)

носит название коэффициента расстройки и отношение величины n, измеряемой в ceκ-1, к частоте собственных колебаний называют безразмерным коэффициентом вязкости:

Колебания материальной точки в теоретической механике               (151')

Введя эти обозначения в предыдущее равенство и разделив обе части его на xст, получим:

Колебания материальной точки в теоретической механике                 (152)
 

Колебания материальной точки в теоретической механике
Рис. 169

Величина η—коэффициент динамичности — позволяет охарактеризовать динамический эффект, вызываемый возмущающей силой.

Коэффициент динамичности η зависит от двух величин (z и β).

Задавшись каким-либо значением β, и откладывая по оси абсцисс различные значения z, а по оси ординат—соответствующие значения коэффициента динамичности η, получим, так называемые, резонансные кривые. На рис. 170 изображены резонансные кривые для значений безразмерного коэффициента вязкости: 0,25, 0,15. и 0,10. Пунктиром нанесена уходящая в бесконечность при Колебания материальной точки в теоретической механике резонансная кривая, соответствующая β = 0, т. е. вынужденным колебаниям без сопротивления.

Как показывает график (рис. 170) в областях, достаточно далеких от резонанса, амплитуды вынужденных колебаний с сопротивлением почти не зависят от безразмерного коэффициента вязкости. В этих областях при вычислении амплитуд вынужденных колебаний можно не учитывать сопротивлений и пользоваться более простой формулой
Колебания материальной точки в теоретической механике

Колебания материальной точки в теоретической механике
Рис. 170

При резонансе (р = k) амплитуда вынужденных колебаний при наличии сопротивлений остается конечной, но наибольшее значение амплитуда имеет, если Колебания материальной точки в теоретической механике, в чем легко убедиться, определив максимум амплитуды при различных р, считая h, k и п данными.

В вынужденных колебаниях с сопротивлением всегда бывает сдвиг фазы колебания по отношению к фазе .возмущающей силы. Величина этого сдвига определяется формулой (137).

Заметим, что все сказанное здесь относительно малых колебаний материальной точки полностью соответствует малым колебаниям материальной системы с одной степенью свободы.