Непрерывность функций и точки разрыва с примерами решения
Содержание:
Непрерывность функций и точки разрыва
Непрерывность функции
Определение: Функция 
- - она определена в этой точке и ее некоторой
-окрестности; - - существуют конечные лево- и правосторонние пределы от функции в этой точке и они равны между собой, т.е.

- предел функции в точке
равен значению функции в исследуемой точке, т.е. 
Пример:
Найти область непрерывности функции 
Решение:
Данная функция непрерывна
так как в каждой точке указанного интервала функция определена, в каждой точке существуют конечные и равные лево- и правосторонние пределы, а предел функции в каждой точке равен значению функции в этой точке.
Замечание: Всякая элементарная функция непрерывна в области своего определения.
Точки разрыва
Определение: Точки, в которых не выполняется хотя бы одно из условий непрерывности функции, называются точками разрыва. Различают точки разрыва первого и второго родов.
Определение: Точкой разрыва I рода называется точка, в которой нарушается условие равенства лево- и правостороннего пределов, т.е.

Пример:
Доказать, что функция
в точке
имеет разрыв первого рода.
Решение:
Нарисуем график функции в окрестности нуля (Рис. 64):
Рис. 64. График функции
Область определения функции:
т.е. точка
является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке:
Следовательно, в изучаемой точке данная функция терпит разрыв первого рода.
Замечание: По поводу точки разрыва I рода иначе говорят, что в этой точке функция испытывает конечный скачок (на Рис. 64 скачок равен 1).
Определение: Точка, подозрительная на разрыв, называется точкой устранимого разрыва, если в этой точке левосторонний предел равен правостороннему.
Пример:
Доказать, что функция
имеет в точке
устранимый разрыв.
Решение:
В точке
функция имеет неопределенность
поэтому эта точка является точкой, подозрительной на разрыв. Вычислив в этой точке лево- и правосторонний пределы
убеждаемся, что данная точка является точкой устранимого разрыва.
Определение: Все остальные точки разрыва называются точками разрыва II рода.
Замечание: Для точек разрыва второго рода характерен тот факт, что хотя бы
один из односторонних пределов равен
т.е. в такой точке функция терпит бесконечный разрыв.
Пример:
Исследовать на непрерывность функцию 
Решение:
Найдем область определения этой функции:
т.е. точка
является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке:
Так как левосторонний предел конечен, а правосторонний предел бесконечен, то в изучаемой точке данная функция терпит разрыв II рода.
Пример:
Исследовать на непрерывность функцию 
Решение:
Найдем область определения этой функции:
т.е. точка
является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке:
Так как левосторонний и правосторонний пределы бесконечены, то в изучаемой точке данная функция терпит разрыв II рода.
Операции над непрерывными функциями
Теорема: Сумма (разность) непрерывных функций есть непрерывная функция.
Доказательство: Докажем приведенную теорему для суммы двух функций
которые определены в некоторой
-окрестности точки
в которой лево- и правосторонние пределы равны между собой. Так как функции
непрерывны в некоторой
-окрестности точки
то выполняются равенства:
В силу того, что существуют конечные пределы обеих функций, то по теореме о пределе суммы двух функций имеем, что
Аналогично теорема доказывается для суммы (разности) любого конечного числа непрерывных функций. Нижеприведенные теоремы доказываются так же, как и теорема.
Теорема: Произведение непрерывных функций есть непрерывная функция.
Теорема: Частное двух непрерывных функций
при условии, что во всех точках общей области определения функция
, есть непрерывная функция.
Теорема: Сложная функция от непрерывных функций есть непрерывная функция.
Схема исследования функции на непрерывность
Исследование функции на непрерывность проводят по следующей схеме:
- находят область определения функции; точки, в которых функция не определена, являются точками подозрительными на разрыв: если функция задана словесным образом, т.е. описывается разными формулами на разных интервалах, то точками подозрительными на разрыв являются точки, определяющие границы интервалов;
- исследуют подозрительные на разрыв точки, для чего вычисляют лево- и правосторонние пределы; классифицируют точки разрыва;
- при наличии точек разрыва строят график функции в малой
-окрестности точки
.
Пример:
Исследовать на непрерывность функцию 
Решение:
Согласно схеме исследования функции на непрерывность имеем:
точка
является точкой подозрительной на разрыв.- вычислим левосторонний
и правосторонний 
пределы; так как пределы бесконечные, то точка
является точкой разрыва второго рода; - построим график функции в небольшой окрестности точки разрыва (Рис. 65).

Рис. 65. Поведение графика функции
в малой окрестности точки разрыва второго рода 
Из рисунка видно, что график функции
—неограниченно приближается к вертикальной прямой
нигде не пересекая эту прямую.
Свойства непрерывных функций на отрезке (a; b)
Свойства непрерывных функций на отрезке
.
Определение: Замкнутый интервал
будем называть сегментом.
Приведем без доказательства свойства непрерывных функций на сегменте
.
Теорема: Если функция
непрерывна на сегменте
, то она достигает своего наименьшего (
) и наибольшего (
) значения либо во внутренних точках сегмента, либо на его концах.
Пример:
Привести примеры графиков функций, удовлетворяющих условиям теорем(см. Рис. 66).

Рис. 66. Графики функций, удовлетворяющих условиям теоремы.
Решение:
На графике а) функция достигает своего наименьшего
и наибольшего
значений на концах сегмента
На графике б) функция достигает своего наименьшего
и наибольшего значения
во внутренних точках сегмента
На графике в) функция достигает своего наименьшего значения
на левом конце сегмента
а наибольшего значения
во внутренней точке сегмента 
Тб. Если функция
непрерывна на сегменте
и достигает своего наименьшего (
) и наибольшего (
) значений, то для любого вещественного числа С, удовлетворяющего неравенству
, найдется хотя бы одна точка
такая, что
.
Пример:
Изобразить графики функций, удовлетворяющих условиям Тб (см. Рис. 67). 
Рис. 67. Графики функций, удовлетворяющих условиям Тб.
Теорема: Если функция
непрерывна на сегменте
и на его концах принимает значения разных знаков, то найдется хотя бы одна точка
такая, что
.
Пример:
Изобразить графики функций, удовлетворяющих условиям теоремы(см. Рис. 68).

Рис. 68. Графики функций, удовлетворяющих условиям теоремы.
На графике а) существует единственная точка, в которой выполняются условия теоремы. На графиках б) и в) таких точек две и четыре, соответственно. Однако в случаях б) и в) для удовлетворения условий теоремы надо разбивать сегмент на отдельные отрезки.
| Рекомендую подробно изучить предметы: |
| Ещё лекции с примерами решения и объяснением: |