Автор Анна Евкова
Преподаватель который помогает студентам и школьникам в учёбе.

Перспективы развития технологий ПК

Содержание:

Введение

Целью данной работы является полное раскрытие темы «Перспективы развития технологий ПК». Выявить и логически изложить все этапы в процессе эволюции вычислительной техники.

Представленная тема является актуальной для нашего времени, так как изменения, происходящие, в мире техники не стоят на месте и превосходят все ожидания.

В процессе эволюции, меняется не только внешний и внутренний мир, а также изменяется работа компьютера в целом, и это значительно облегчает труд и время человека работающего с ним.

Основной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения компьютеров и, как следствие, переход от отдельных машин к их системам

Обычные домашние ПК, ставшие неотъемлемой частью нашей жизни, концентрируют в себе вычислительную мощь. С помощью ПК мы черпаем информацию из Интернета, храним свои цифровые архивы, общаемся с друзьями и реализуем свои потребности в творчестве, совершаем покупки, отдыхаем за просмотром фильмов или прослушиванием музыки.

Благодаря разработке и внедрению микропроцессоров в структуру ЭВМ появились малогабаритные, удобные для пользователя персональные компьютеры. Ситуация изменилась, в роли пользователя может быть не только специалист по вычислительной технике, но и любой человек.

Определение «персональный» возникло потому, что человек получил возможность общаться с ЭВМ без посредничества профессионала-программиста, самостоятельно, персонально. При этом не обязательно знать специальный язык ЭВМ.

Развитие ПК - представляется изменением и совершенствованием всех компонентов компьютера, вплоть от внешнего вида, размеров до его содержимого. Именно внутренние устройства являются центральной частью компьютера отвечающих за работу и производительность в целом, а значит, именно на их развитие было обращено все внимание на протяжении многих лет.

Вывод: «Железо» вычислительной техники является наиболее важным элементом компьютера, а значит ответить на интересующие нас вопросы, поможет подробное описание элементов относящихся к нему.

Практически каждый год в мире техники появляются новинки. Еще несколько десятков лет назад компьютер был неподъемным - большие интегральные схемы (БИС) и пугал своими габаритами, в процессе совершенствования может уместиться в обычной сумке, удивительно, но это факт.

В настоящее время, компьютер занимает огромное место в жизни человека. Практически всю свою деятельность мы осуществляем на ПК, не зависимо работаем ли мы на своем рабочем месте, либо проводим досуг в сетях Интернета.

Уже сегодня пользователям глобальной информационной сети Интернет стала доступной практически любая находящаяся в хранилищах знаний этой сети информация.

В современном мире компьютеризировано практически все: начиная от дома до самого простейшего офиса. Компьютер помогает человеку во всех его деяниях: будь-то обычный отдых или рабочие будни. С помощью компьютера люди, могут общаться с людьми с другого города, даже страны, отыскать интересующую их информацию, купить-продать и многое другое - при помощи всемирной «паутины».

Современных видов компьютерной техники добивались десятки, и даже сотни лет. В истории вычислительной техники существует своеобразная периодизация ЭВМ по поколениям. Но с чем это связано? В чем конкретно заключается периодизация и что несет с собой развитие персонального компьютера?

На эти вопросы и необходимо получить ответ по окончании данной работы.

Глава 1 Архитектура персонального компьютера

1.1 Функциональные и технические характеристики устройств персонального компьютера

Электронная вычислительная машина (ЭВМ), компьютер - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Вычислительные машины могут быть классифицированы по ряду признаков, в частности:

- по принципу действия;

- по этапам создания и элементной базе;

- по назначению;

- по способу организации вычислительного процесса;

- по размеру вычислительной мощности;

- по функциональным возможностям;

- по способности к параллельному выполнению программ.

По принципу действия вычислительные машины делятся на три больших класса: аналоговые, цифровые и гибридные.

Аналоговые - вычислительные машины, работают с информацией, представленной в виде непрерывного ряда значений какой-либо физической величины.

Цифровые - вычислительные машины работают с информацией, представленной в цифровой форме.

Гибридные - вычислительные машины, или вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме.

На сегодняшний для людей многих профессий персональный компьютер - это надежный и умный помощник.

ЭВМ включает три основных устройства:

- системный блок;

- монитор;

- клавиатура.

A_simplified_diagram_of_a_computer (1).jpg

Рисунок 1 – устройство компьютера

Системный блок - представляет собой основной узел, внутри которого установлены наиболее важные компоненты.

В системном блоке находится вся электронная начинка компьютера. Основными деталями системного блока являются:

  • процессор - главное компьютерное устройство управления и проведения вычислений,
  • материнская плата - устройство для крепления на ней других внутренних компьютерных устройств,
  • блок питания - устройство для распределения электрической энергии между другими компьютерными устройствами.

Устройства, подключаемые к нему снаружи, - называются внешними. Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными.

Монитор - представляет собой устройство для отображения результатов обработки информации, основанное на использовании жидко кристаллических мониторов. Он получает видеосигнал в готовом виде от видеоконтроллера, расположенного в системном блоке. Видеоконтроллер получает от микропроцессора компьютера команды по формированию изображения, создает его в своей служебной памяти и преобразует в сигнал, подаваемый на монитор.

Клавиатура - устройство ввода текста, чисел и управляющей информации в основную память.

1.1.1 Компоненты материнской платы

К внутренним устройствам системного блока относится материнская плата - основная плата персонального компьютера, содержащая основные электронные компоненты. С помощью материнской платы осуществляется взаимодействие между большинством устройств машины.

Материнская плата представляет собой печатную плату на которой размещается большое число различных микросхем, разъемов и других элементов:

  • процессор - основная микросхема, выполняющая большинство математических и логических операций;
  • микропроцессорный комплект - набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы;
  • шины - наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;
  • оперативная память - набор микросхем, предназначенных для временного хранения данных;
  • постоянно запоминающее устройство (ПЗУ) - микросхема, предназначенная для длительного хранения данных, в том числе и когда компьютер выключен;
  • разъемы для подключения дополнительных устройств.

К системам, расположенным на материнской плате относятся оперативная память (RAM), а на физическом уровне памяти различают динамическую память (DRAM) и статическую память(SRAM).

1.1.2 Строение процессора

Главным элемент в компьютере является процессор (Central Processor Unit, CPU) или микропроцессор - электронная микросхема, включающая в себя огромное количество элементарных полупроводниковых элементов. Процессор выполняет функции обработки информации и управления работой всех блоков ЭВМ. Быстродействие компьютера определяется тактовой частотой, с которой он работает.

Процессор, состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Процессор является ядром любой ЭВМ. В состав центрального процессора входят:

- арифметико-логическое устройство (АЛУ);

- центральное устройство управления;

- внутренняя регистровая память;

- схема обращения к оперативной памяти;

- схемы управления системной шиной.

Внутренние ячейки процессора называют регистрами. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находящиеся во внешних портах процессора. Часть данных он интерпретирует непосредственно как данные, часть из них представляют собой адресные данные, а часть - как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует систему команд процессора. С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами.

Процессоры, относящиеся к одному семейству, имеют одинаковые или близкие системы команд. Процессоры, относящиеся к разным семействам, различаются по системе команд и невзаимозаменяемы:

  • CISC - процессоры используют в универсальных вычислительных системах;
  • RISC - процессоры используют в специализированных вычислительных системах или устройствах, ориентированных на выполнение единообразных операций.

Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Программа, написанная для одного процессора, может исполняться и другим процессором. Процессоры, имеющие разные системы команд, как правило, несовместимы или ограниченно совместимы на программном уровне.

Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти.

В основе работы процессора лежит тактовый принцип. Исполнение каждой команды занимает определенное количество тактов. В персональном компьютере тактовые импульсы обеспечивает генератор тактовых частот. Генератор тактовых импульсов генерирует последовательность электрических импульсов, частота которых определяет тактовую частоту микропроцессора. Промежуток времени между соседними импульсами определяет время одного такта, или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, поскольку каждая операция в вычислительной машине выполняется за определенное количество тактов.

Процессор считывает данные из памяти, манипулирует ими и возвращает результат обработки в память или передает на внешние устройства.

Существуют процессоры, предназначенные для обработки данных любой природы: текст, число, графика, звук. Это возможно потому, что данные перед операциями преобразуются к простейшему виду, т.е. представляются в двоичном коде, «оцифровываются». Физически это может выглядеть как чередование намагниченных и размагниченных участков жесткого диска, отражающих и не отражающих луч участков компакт-диска, передаваемых сигналов напряжения высокого и низкого уровня.

В работе цифровых устройств используются: двоичная система счисления, Булева логика, законы алгебры логики.

Основными характеристиками процессора являются:

  • быстродействие - количество операций, производимых в одну секунду, измеряется в бит/с;
  • тактовая частота - количество тактов, производимых процессором за одну секунду, она задает ритм работы компьютера. Тактовая частота определяет число тактов работы процессора в секунду. Чем выше тактовая частота, тем меньше длительность выполнения одной операции и тем выше производительность компьютера. Современный персональный компьютер может выполнять миллионы элементарных операций в секунду;
  • разрядность - количество двоичных разрядов, которые процессор обрабатывает за один такт. Указывая разрядность процессора 64, имеют в виду, что процессор имеет 64-разрядную шину данных, т.е. за один такт он обрабатывает 64 бита. Для современных процессоров характерно повышение тактовой частоты.

1.1.3 Оперативная память

Оперативная память (Random Access Memory, RAM) - это массив кристаллических ячеек, способных хранить данные.

Оперативная память является очень важным элементом компьютера. В ней хранятся программы и данные, с которыми непосредственно работает ПК. Основу ОЗУ составляют большие интегральные схемы, содержащие матрицы полупроводниковых элементов.

Структурно ОЗУ состоит из миллионов отдельных ячеек памяти емкостью один байт каждая. Поэтому основной характеристикой оперативной памяти является ее объем, который исчисляется в байтах. Его величина определяет перечень программ, которые можно использовать на ПК.

Ячейки динамической памяти (DRAM) можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках.

Ячейки статической памяти (SRAM) можно представить как электронные микроэлементы - триггеры, состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее.

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (так называемой кэш-памяти), предназначенной для оптимизации работы процессора.

Каждая ячейка памяти имеет свой адрес, который выражается числом. В большинстве современных процессоров предельный размер адреса обычно составляет 32 разряда, а это означает, что всего независимых адресов может быть 232. Одна адресуемая ячейка содержит восемь двоичных ячеек, в которых можно сохранить 8 бит, то есть один байт данных.

Оперативная память в компьютере размещается на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате.

Основными характеристиками модулей оперативной памяти являются объем памяти и скорость передачи данных. Скорость передачи данных определяет максимальную пропускную способность памяти (в Мбайт/с или Гбайт/с) в оптимальном режиме доступа. При этом учитывается время доступа к памяти, пропускной способности шины и дополнительные возможности, такие как передача сигналов за один такт работы. Одинаковые по объему модули могут иметь разные скоростные характеристики.

1.1.4 Постоянно запоминающее устройство

В момент включения компьютера на адресной шине процессора выставляется стартовый адрес. Это происходит аппаратно, без участия программ. Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам.

Этот исходный адрес после включения указывает на тип памяти способный длительное время хранить информацию - постоянное запоминающее устройство (ПЗУ).

Постоянная память (Read-Only Memory, ROM) используется для хранения неизменяемой информации: загрузочных программ операционной системы, программ тестирования устройств компьютера и выполнения базовых функций по их обслуживанию. Поскольку большая часть этих программ связана с обслуживанием процессов ввода-вывода, содержимое ПЗУ часто называют система ввода-вывода (Base Input-Output System, BIOS). Постоянное запоминающее устройство выполняется из полупроводниковых модулей и в отличие от ОЗУ является энергонезависимым (информация сохраняется при выключении компьютера). Данные в ПЗУ заносятся при его изготовлении и не могут быть изменены пользователем. Объем постоянной памяти значительно меньше, чем оперативной, и не превышает нескольких сотен Кбайт.

Каждая ячейка основной памяти имеет свой, отличный от всех остальных адрес. Основная память имеет для ОЗУ и ПЗУ единое адресное пространство - совокупность ячеек памяти, к которым можно обращаться с использованием машинного адреса.

1.1.5 Интерфейс системного блока

Интерфейс системного блока представлен тремя шинами: шина данных, адресная шина и командная шина.

У процессоров семейства Pentium адресная шина 32-разрядная, то есть состоит из 32 параллельных проводников. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

По шине данных передаются данные из оперативной памяти в регистры процессора и обратно. В современных персональных компьютерах шина данных, как правило, 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор из оперативной памяти по командной шине.

В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находящиеся во внешних портах процессора.

После сборки и компьютер, и все его адаптеры оказываются связанными между собой множеством соединений. Если бы было возможно связать их вместе, получился бы толстый жгут или шина. Шина (bus) - это главная магистраль, по которой происходит информационный обмен между устройствами компьютера. При этом количество информации передаваемой за один прием зависит от пропускной способности шины. Время необходимое для однократного считывания или записи данных по проводам шины, называется циклом шины.

Все устройства на системной шине CPU рассматривает либо как адресуемую память, либо как порты ввода-вывода.

1.1.6 Кэш-память

Кэш-память (cache-memory) предназначена для согласования скорости работы сравнительно медленных устройств, таких, как динамическая память с быстрым микропроцессором. Использование кэш-памяти позволяет избежать циклов ожидания в его работе, которые снижают производительность всей системы.

С помощью кэш-памяти обычно делается попытка согласовать также работу внешних устройств, например, различных накопителей, и микропроцессора. Соответствующий контролер кэш-памяти должен заботиться о том, чтобы команды и данные, которые будут необходимы микропроцессору в определенный момент времени, именно к этому моменту оказывались в кэш-памяти.

Кэш-память - и это сверхоперативная память. Она значительно быстрее обычной оперативной памяти, но меньше по объему. Объем кэш-памяти определяет модификации ПК. Кэш-память доступна только процессору, которая хранит в ней промежуточные и часто используемые данные. Это позволяет процессору затрачивать меньше времени на доступ к данными и раньше освобождаться для других работ. Все это вместе ускоряет исполнение программ. Иначе говоря, кэширование - это организация хранения наиболее употребляемых данных в специально отведенной для этого части памяти с максимально быстрым доступом. Кэш-память встроенная внутрь микросхемы микропроцессора называется кэш-памятью первого уровня, а установленная вне его - кэш-памятью второго уровня.

1.1.7 Видеокарта

Видеоконтроллер (видеокарта) - это электронная схема, обеспечивающая формирование видеосигнала. Это устройство позволяет выводить изображение на экран монитора, захватывать движущееся изображение и обрабатывать изображение, поступающее с видеокамеры, видеомагнитофона или телевизора.

Видеокарта не всегда была компонентом ПК. В общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные о яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора.

С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти.

За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: MDA (монохромный), CGA (4 цвета), EGA (16 цветов), VGA (256 цветов). В настоящее время применяются видеоадаптеры SVGA, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640x480, 800x600,1024x768, 1152x864; 1280x1024 точек и далее).

Мониторы выпускаются с экранами разных размеров. Размер экрана монитора задается обычно величиной его диагонали в дюймах: для IBM PC-совместимых ПК приняты типоразмеры экранов 14, 15, 17, 19, 21 и 22 дюйма.

1.1.8 Звуковая карта

Звуковая карта (sound card, sound blaster) явилась одним из наиболее поздних усовершенствований персонального компьютера. Она устанавливается в один из разъемов материнской платы в виде дочерней карты и выполняет вычислительные операции, связанные с обработкой звука, речи, музыки. Звук воспроизводится через внешние звуковые колонки, подключаемые к выходу звуковой карты. Специальный разъем позволяет отправить звуковой сигнал на внешний усилитель. Имеется также разъем для подключения микрофона, что позволяет записывать речь или музыку и сохранять их на жестком диске для последующей обработки и использования.

Звуковая карта - это устройство для качественного воспроизведения звука через акустические колонки или наушники, поскольку слабый встроенный в компьютер динамик хорошо воспроизводить звук не способен. Звуковые карты обычно позволяют записать звук с микрофона, с линейного выхода магнитофона или другого источника.

Звуковая карта может быть на собственной печатной плате и вставляться в разъем расширения или сразу присутствовать на системной плате.

Для дополняющей звуковую карту акустической системы основными характеристиками являются полоса пропускания неискаженного звука и выходная мощность.

Основным параметром звуковой карты является разрядность, определяющая количество битов, используемых при преобразовании сигналов из аналоговой в цифровую форму и наоборот. Чем выше разрядность, тем меньше погрешность, связанная с оцифровкой, тем выше качество звучания. Минимальным требованием сегодняшнего дня являются 16 разрядов, а наибольшее распространение имеют 32-разрядные и 64-разрядные устройства.

В области воспроизведения звука наиболее сложно обстоит дело со стандартизацией. В отсутствие единых централизованных стандартов, стандартом де-факто стали устройства, совместимые с устройством SoundBlaster, торговая марка на которое принадлежит компании Creative Labs.

1.1.9 Характеристики жесткого диска

Жесткий диск (Hard Disk, HDD) - основное устройство для долговременного хранения больших объемов данных и программ.

На жестком диске данные хранятся на магнитной поверхности диска. Информация записывается и снимается с помощью магнитных головок. Внутри жесткого диска может быть установлено несколько пластин (дисков), в просторечье именуемые «блинами». Двигатель, вращающий диск, включается при подаче питания на диск и остается включенным до снятия питания.

Двигатель вращается с постоянной скоростью, измеряемой в оборотах в минуту. Данные организованы на диске в цилиндрах, дорожках и секторах. Цилиндры - концентрические дорожки на дисках, расположенные одна над другой. Дорожка затем разделяется на сектора.

Время поиска (seek time) минимально только в случае необходимости операции с дорожкой, которая является соседней с той, над которой в данный момент находится головка. Наибольшее время поиска соответственно при переходе с первой дорожки на последнюю.

Все магнитные головки диска находятся в каждый момент времени над одним и тем же цилиндром, и время переключения определяется тем, насколько быстро выполняется переключение между головками при чтении или записи.

Время доступа к данным - это комбинация из времени поиска, времени переключения головок и задержки позиционирования, измеряется в миллисекундах. Время поиска, это только показатель того, как быстро головка оказывается над нужным цилиндром. До тех пор, пока данные не записаны или считаны, следует добавить время на переключение головок и на ожидание необходимого сектора.

Операция считывания происходит следующим образом: намагниченные частицы покрытия, проносящиеся на высокой скорости вблизи головки, находят в ней ЭДС самоиндукции, электромагнитные сигналы, возникающие при этом, усиливаются и передаются на обработку.

1.1.10 Операционная система

Операционная система (OC) - это комплекс программ, который загружается при включении компьютера. Она производит диалог с пользователем, осуществляет управление компьютером, его ресурсами (оперативной памятью, местом на дисках), запускает другие (прикладные) программы на выполнение. ОС обеспечивает пользователю и прикладным программам удобный способ общения с устройствами компьютера. Основная причина необходимости операционной системы состоит в том, что элементарные операции для работы с устройствами компьютера и управления ресурсами компьютера - это операции низкого уровня, поэтому действия, которые необходимы пользователю и прикладным программам состоят из нескольких сотен или тысяч таких элементарных операций.

Операционная система MS DOS состоит из следующих частей:

Базовая система ввода-вывода (ВIOS), находящаяся в постоянной памяти компьютера.

Загрузчик операционной системы - это очень короткая программа, находящаяся в первом секторе каждой дискеты с операционной системой DOS. Функция этой программы заключается в считывании в память еще двух модулей операционной системы IO.sys и MS-DOS.sys, которые и завершают процесс загрузки DOS.

Командный процессор обрабатывает команды, вводимые пользователем (поверка синтаксиса и семантики). Командный процессор находится в дисковом файле COMMAND.COM на диске, с которого загружается операционная система.

Внешние команды MS DOS - это программы, поставляемые вместе с операционной системой в виде отдельных файлов. Эти программы выполняют действия обслуживающего характера, например форматирование дискет, проверку дисков.

Драйверы устройств - это специальные программы, которые дополняют систему ввода-вывода ОС и обеспечивают обслуживание новых или нестандартное использование имеющихся внешних устройств.

1.2 Работа ЭВМ и обращение к данным

1.2.1 Работа процессора

Все функциональные узлы ПК связаны между собой через системную магистраль, представляющую из себя более трёх десятков упорядоченных микропроводников, сформированных на печатной плате.

Высокая скорость работы ЭВМ потребовала жесткой регламентации времени на каждый информационный обмен в отдельности.

При включении компьютера - поступила команда: «Пуск». Он относится, к устройству управления: пуск УУ и передача стартового адреса. Далее события развиваются следующим образом. Адрес первой команды программы поступает в счетчик команд (СК) и тем самым определяется место в памяти, откуда можно извлечь обрабатываемую команду.

Получив приказ о начале работы, УУ передает в память, в качестве адреса разыскиваемой информации, содержимое счетчика команд. Эта передача сопровождается приказом для памяти: «Выдать содержимое указанной ячейки на регистр команд». После этого из ячейки памяти с адресом, равным содержимому счетчика команд СК, считывается команда, размещаемая в регистре команд (РК).

Следующий шаг - дешифрация кода операции. Устройство управления с помощью дешифратора расшифровывает код операции команды и, настраивая арифметико-логическое устройство на выполнение операции, начинает отработку алгоритма команды. Затем адрес первого слагаемого передается в запоминающее устройство. Это первый адрес в адресной части, расположенной в РК. По требованию УУ этот адрес через регистр считываемой информации (РСИ) передается далее АЛУ.

После того как АЛУ примет в качестве первого слагаемого содержимое регистра считываемой информации, устройство управления начнет выборку следующего слагаемого. Для этого в память передается номер ячейки, хранящей второе слагаемое (второй адрес в адресной части РК), и содержимое этой ячейки поступает через РСИ в АЛУ.

Получив оба слагаемых, АЛУ с помощью сумматора выполняет операцию сложения и передает результат в регистр записываемой информации (РЗИ). Завершением обработки команды является запись содержимого РЗИ (результата) по адресу результата (третий адрес в адресной части) РК.

Существуют машины разной адресности: одно-, двух-, полутораадресные и даже безадресные. В формате команды двухадресной машины помимо кода операции указываются адреса только двух операндов (величин, участвующих в операции). А в одноадресных машинах команда, кроме кода операции, содержит лишь один адрес - адрес одного из операндов. Вторым операндом служит содержимое специального узла - накапливающего регистра, куда второй операнд предварительно заносится из ЗУ специальной командой пересылки или остается после выполнения предыдущей команды.

Адресация задается аппаратным способом с использованием счетчика команд. Исключением являются только команды условного перехода, для которых адрес следующей команды при выполнении заданного условия явно задается в адресном поле команды. Если условие не выполняется, то адрес следующей команды определяется обычным способом, т.е. содержимым счетчика команд. Неявная или подозреваемая адресация позволяет ввести безадресный или нульадресный формат команд ЭВМ. Последовательность команд для адресных форматов задается аппаратным способом; для безадресных необходимо неявно задать и последовательность команд, и последовательность операндов. Это достигается в машинах с так называемой стековой структурой памяти.

Стек заполняется и освобождается в определенном порядке, там операция может быть проведена только над операндами, расположенными в верхушке стека, в верхних его регистрах.

Таким образом, когда память ЭВМ организована в виде стека, то для выполнения многих операций можно не указывать адреса операндов, если они предварительно помещены в верхушке стека или непосредственно следом за ней. Так, команда «Сложить», задаваемая только кодом операции (и ничем более), складывает два числа, одно из которых находится в верхушке стека, а другое сразу же вслед за ним, и помещает результат в верхушку стека. Так как в команде совсем нет адресной части, это, не означает, что машинные слова в стековой памяти не имеют адресов. Адреса существуют, но после того как операнды посланы в стек, нет необходимости указывать эти адреса в адресной части большинства машинных команд.

В общем случае система команд процессора включает в себя следующие четыре основные группы команд:

- команды пересылки данных;

- арифметические команды;

- логические команды;

- команды переходов.

Команды пересылки данных не требуют выполнения никаких операций над операндами. Операнды просто пересылаются (точнее, копируются) из источника (Source) в приемник (Destination). Источником и приемником могут быть внутренние регистры процессора, ячейки памяти или устройства ввода/вывода. АЛУ в данном случае не используется.

Арифметические команды выполняют операции сложения, вычитания, умножения, деления, увеличения на единицу, уменьшения на единицу. Этим командам требуется один или два входных операнда. Формируют команды один выходной операнд.

Логические команды производят над операндами логические операции, например, логическое И, логическое ИЛИ, исключающее ИЛИ, очистку, инверсию, разнообразные сдвиги (вправо, влево, арифметический сдвиг, циклический сдвиг). Этим командам, как и арифметическим, требуется один или два входных операнда, и формируют они один выходной операнд.

Команды переходов предназначены для изменения обычного порядка последовательного выполнения команд. С их помощью организуются переходы на подпрограммы и возвраты из них, всевозможные циклы, ветвления программ, пропуски фрагментов программ. Команды переходов всегда меняют содержимое счетчика команд. Переходы могут быть условными и безусловными. Именно эти команды позволяют строить сложные алгоритмы обработки информации.

Вычислительные машины могут выполнять обработку информации в разных режимах:

- однопрограммном (монопольном);

- многопрограммном.

Где многопроцессорный режим, в свою очередь подразделяется на:

- диалоговый режим,

- режим реального времени.

Однопрограммный режим использования компьютера самый простой, применяется во всех поколениях компьютеров. Из современных машин этот режим чаще всего используется в персональных компьютерах, где он называется реальным режимом работы микропроцессора. В этом режиме все ресурсы ПК передаются одному пользователю.

Многопрограммный (многозадачный) режим обеспечивает расходование ресурсов компьютера. Для реализации этого режима необходимо, прежде всего разделение ресурсов машины в пространстве и во времени. Естественно, такое разделение ресурсов эффективно может выполняться только автоматически, следовательно, требуется автоматическое управление вычислениями.

Режим разделения времени характерен тем, что на машине действительно одновременно решается несколько задач, каждой из которых по очереди выделяются кванты времени, обычно недостаточные для полного решения задачи. Условием прерывания решения текущей задачи служит либо истечение кванта выделенного времени, либо обращение к процессору какого-либо приоритетного внешнего устройства, например клавиатуры для ввода информации.

Прерывание задачи от клавиатуры является типичным для диалогового режима работы ПК, представляющего собой частный случай режима разделения времени. Диалоговые режимы характерны для многопользовательских систем: они обеспечивают одновременную работу нескольких пользователей при решении задач в интерактивном режиме. В процессе решения задачи пользователь имеет возможность корректировать ход выполнения своего задания.

Глава 2 Пути развития персонального компьютера

2.1 История развитие ЭВМ

2.1.1 Эволюция поколений

Успехи в развитии микропроцессоров и микро-ЭВМ привели к появлению персональных ЭВМ (ПЭВМ), предназначенных для индивидуального обслуживания пользователя и ориентированных на решение различных задач неспециалистами в области вычислительной техники. Все оборудование персональной ЭВМ размещается в пределах стола.

В развитии вычислительной техники можно выделить предысторию и четыре поколения электронных вычислительных машин. Впереди создание ЭВМ пятого поколения. Развитие ЭВМ, по-видимому, ярче всего отражает динамику научно-технического прогресса второй половины XX в.

ЭВМ первого поколения изготовлялись на основе вакуумных электронных ламп. Работа на ЭВМ производилась за пультом, где можно было видеть состояние каждой ячейки памяти и любого регистра.

Программы для ЭВМ первого поколения составлялись в машинных кодах в виде длинных последовательностей двоичных чисел. Занимались этим исключительно математики, выполнявшие на ЭВМ сложнейшие расчеты.

Первые ЭВМ имели наиболее простую и наглядную трехадресную систему команд. Трехадресная команда легко расшифровывалась и была удобна в использовании, но с ростом объемов ОЗУ ее длина становилась непомерно большой. Поэтому появились двухадресные машины, длина команды в которых сокращалась за счет исключения адреса записи результата. В таких ЭВМ результат операции оставался в специальном регистре и был пригоден для использования в последующих вычислениях.

В машине первого поколения реализованы основополагающие принципы построения компьютеров, такие как:

- наличие арифметико-логических, устройств ввода/вывода, памяти и управления;

- кодирование и хранение программы в памяти, подобно числам;

- двоичная система счисления для кодирования чисел и команд;

- автоматическое выполнение вычислений на основе хранимой программы;

- наличие как арифметических, так и логических операций;

- иерархический принцип построения памяти;

- использование численных методов для реализации вычислений.

Следующее, второе поколение ЭВМ появилось через 10 лет. В этих ЭВМ логические элементы реализовывались уже не на радиолампах, а на базе полупроводниковых приборов-транзисторов. Это позволило значительно увеличить надежность машин, сократить их размеры и потребление электроэнергии. Тем самым открылся путь для серийного производства ЭВМ.

Появление ЭВМ, построенных на транзисторах, привело к уменьшению их габаритов, массы, энергозатрат и стоимости, а также к увеличению надежности и производительности. Это сразу расширило круг пользователей и, следовательно, номенклатуру решаемых задач.

Наиболее просто была организована память в ЭВМ первых двух поколений. Она состояла из отдельных ячеек, содержимое каждой из которых считывалось или записывалось как единое целое. Каждая ячейка памяти имела свой номер, который и получил название адреса. Очевидно, что адреса соседних ячеек ОЗУ являются последовательными целыми числами, т.е. отличаются на единицу. В рассматриваемых ЭВМ использовались данные только одного типа (вещественные числа), причем их длина равнялась длине машинной команды и совпадала с разрядностью памяти и всех остальных устройств машины.

Применение полупроводниковых приборов позволило резко повысить надежность ЭВМ, сократить ее массу, габариты и потребляемую мощность. Полупроводниковые элементы - транзисторы - составляли основу ЭВМ второго поколения. Эти ЭВМ по сравнению с ЭВМ первого поколения обладали большими возможностями и быстродействием.

В составе ЭВМ второго поколения появились печатающие устройства для вывода, телетайпы для ввода и магнитные накопители для хранения информации. Начали создаваться первые автоматизированные системы, а базе ЭВМ.

Для появления третьего поколения ЭВМ вновь понадобилось всего лишь около 10 лет. Их основу составляли интегральные микросхемы, содержавшие на одной полупроводниковой пластинке сотни или тысячи транзисторов. Благодаря этому уменьшились размеры ЭВМ, потребление ими электроэнергии и стоимость компьютеров.

В состав ЭВМ третьего поколения были включены удобные устройства ввода-вывода и накопления, информации (дисплеи) на основе электронно-лучевых трубок, накопители на магнитных лентах и дисках, графопостроители. Начали создаваться операционные системы, базы данных, языки структурного программирования, первые системы «искусственного интеллекта», стали внедряться системы автоматизированного проектирования и управления.

В ЭВМ третьего поколения стало возможным обрабатывать несколько типов данных: символы текста (1 байт), целые числа (2 байта), вещественные числа обычной или двойной точности (4 или 8 байт соответственно). В связи с этим была введена новая условная единица измерения информации - машинное слово. Оно равнялось 4 байтам и соответствовало длине стандартного вещественного числа.

В машинах третьего поколения появились и еще несколько особенностей: разная длина команд в зависимости от способа адресации данных, наличие специальной сверхоперативной регистровой памяти, вычисление эффективного адреса ОЗУ как суммы нескольких регистров. Все это получило дальнейшее развитие в компьютерах четвертого поколения, для которых разрядность микропроцессора стала одной из важнейших характеристик.

Для появления ЭВМ четвертого поколения вновь потребовалось 10 лет. Элементной базой этих ЭВМ стали большие интегральные схемы (БИС), в которых на одном кристалле кремния размещаются уже десятки и сотни тысяч логических элементов. Такие интегральные схемы позволяют создавать на одном-единственном кристалле программируемые блоки управления различными устройствами.

Наиболее яркими представителями ЭВМ четвертого поколения служат персональные ЭВМ, габариты которых позволяют устанавливать их на любом рабочем месте. В состав этих ЭВМ включаются удобные средства накопления, ввода и предоставления информации: накопители на гибких магнитных дисках, цветные графические дисплеи, графические планшеты, компактные печатающие устройства.

Массовое распространение персональных ЭВМ изменило требования к программам. Главными из этих требований стали: правила работы, эстетичность, надежность программ, универсальность их функций, простота обучения работе на ЭВМ.

Следующее, пятое поколение ЭВМ пришло на смену ЭВМ четвертого поколения еще до конца прошлого столетия. Элементной базой этих ЭВМ служат сверхбольшие интегральные схемы (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле. Главным же является существенное увеличение электронной памяти в этих схемах, которая служит базой для их «интеллекта».

Одной из главных проблем развития ЭВМ (как четвертого, так и перспективного пятого поколения) является проблема разработки программного обеспечения. Массовое использование ЭВМ по-новому ставит вопрос о разработке и эксплуатации программных средств.

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов.

2.1.2 Развитие компьютерной техники

Различные устройства, от громоздких ламповых компьютеров середины пятидесятых годов прошлого века до миниатюрных современных ноутбуков - всю эту технику мы называем компьютерами.

Современные компьютеры разнообразны. Хотя в принципе все они работают по одной и той же классической схеме, но отличаются друг от друга не только внешним видом, но даже и типом платформы (платформа Apple или IBM), которые определяют виды используемых комплектующих и виды программного обеспечения. Самое значимое, среди достижений компьютерной науки это Интернет - всемирная компьютерная сеть.

История Интернета началась в середине прошлого века. Перед учеными была поставлена проблема: необходима была четкая, налаженная система, позволяющая обмениваться информацией по принципу «каждый с каждым».

В эту сеть требовалось объединить не только компьютеры, служившие мозговым центром любой исследовательской лаборатории, но и множество мелких локальных «подсетей». И вот в январе 1969 года всего за несколько минут была запущена система, связавшая между собой четыре компьютера в разных концах земного шара.

Сеть развивалась с такой скоростью, что вскоре стало ясно: необходимо полностью переработать механизм доступа к Arpanet. Появление протокола «ТСP/IP» (Transmission Control Protocol/Internet Protocol) позволило пользователям с легкость подключаться к Интернету при помощи обычной телефонной линии.

Развитие сети шло быстрыми темпами. Всего за шесть лет существования в качестве открытой информационной сети число подключенных к ней пользователей увеличилось более чем в 100 раз.

В начале 90-х годов прошлого века получил распространение графический способ отображения информации в сети в виде «страничек», способных нести не только текст, как раньше, но и графику, а позднее - еще и элементы мультимедиа (звук и даже видео).

Интернет подразделяется на уровни. Самый нижний и самый массовый уровень Интернета это простые пользователи, подключенные к сети через низкоскоростной телефонный канал или локальную сеть. Скорость передачи данных на этом уровне очень мала - не более нескольких килобайт в секунду. Пользователи, связанные с Интернетом через волоконно-оптический кабель, могут получать информацию из сети уже со скоростью до нескольких Мбит в секунду.

Следующий уровень сети - провайдеры. Провайдеры - держатели еще более мощных и скоростных каналов связи, которыми не только пользуются сами, но и предоставляют возможность подключения к сети конечным пользователям и другим провайдерам классом ниже.

Для удобства работы с Интернетом серверы сети делятся на логические группы - так называемые доменные зоны, которые в свою очередь делятся на географические и тематические. Географическая доменная зона выделяется каждому государству, подключенному к сети посредством своих компьютеров.

Тематическая доменная зона зависит только от типа учреждения, которое владеет данным сервером.

К сервисам Интернета относится - электронная почта (email). Благодаря наличию электронной почты пользователи имеют возможность обмениваться персональными сообщениями, пересылать дуг другу различные документы, картинки, программы. Скорость доставки почты практически мгновенная. Она не зависит от скорости передвижения живого почтальона или машины, забирающей письма из почтового ящика. Электронная почта надежна.

По электронной почте можно отправить не только текстовое сообщение, но и графическое изображение, переслать видео и аудио сообщение.

Всемирная паутина (Word Wide Web, WWW) настолько популярна, что многие пользователи Интернета полагают, что выражение «всемирная паутина» (Word Wide Web) является синонимом Интернета. Web - это гигантская гипертекстовая система, в которой документы, рассоложенные по всему миру, связаны с друг другом ссылками. Именно гиперссылки связывают воедино все ресурсы сети. Гиперссылками могут быть оснащены не только текстовые файлы, но и графические элементы.

Чат (chat-беседа) - сервис Интернета, популярный среди людей, любящих медленные разговоры преимущественно «ни о чем».

Web-форумы - также система общения между пользователями. Часто это форумы поддержки созданные компаниями для обеспечения информацией своих клиентов.

Программы-браузеры - браузером, называют программу, которая служит для просмотра страниц Интернета. На сегодняшний день существует множество таких программ, самые известные - это Internet Explorer, Opera, Netscape Navigator.

Одной из главных частей Интернета являются различные поисковые системы. Они нужны в тех случаях, когда точный адрес сайта не известен. Поиск в них обычно производится по ключевым словам.

Поисковых систем сейчас огромное количество: это, прежде всего, Rambler, Yandex, mail.ru, Google, Yahoo, Aport. Помимо выше перечисленных гигантов существуют ещё очень много мелких поисковых систем, но поиск в них не всегда бывает точный. Разные поисковики нужны для разных вещей: например, Yahoo и Google признаны лучшими по поиску изображений.

На сегодняшний день одной из главных проблем Интернета являются вирусные атаки. Вирус - это, прежде всего программа. Но эта программа отличается от обыкновенного ПО (программного обеспечения) тем, что одной из главных её задач являются вредоносные действия. Вредоносные действия могут носить разный характер от различных шуток до полного уничтожения информации с жёсткого диска или ещё хуже: вывода из строя материнской платы путём порчи настроек управляющей микропрограммы-BIOS.

2.1.3 Многоядерные процессы

Компьютерные системы наделяются новыми способностями, поэтому произошел переход к следующему этапу эволюционного развития цифровых полупроводниковых устройств - к многоядерной архитектуре процессоров и соответствующих платформ.

Разработка более 20 двухъядерных и многоядерных процессоров, являющихся основой построения платформ для высокопроизводительных серверов, массовых серверов, рабочих станций, настольных ПК, мобильных и сетевых устройств.

Многоядерный процессор содержит два или более вычислительных ядер на одном кристалле. Он имеет один корпус и устанавливается в один разъем на системной плате, но операционная система воспринимает каждое его вычислительное ядро как отдельный процессор с полным набором вычислительных ресурсов. Например, двухъядерный процессор - это реализация многоядерности с двумя вычислительными ядрами.

Все большее значение многоядерные процессоры приобретают в условиях всеобщей «цифрофикации» окружающей нас информации. Музыка, видео, фотографии, игры - их носители повсеместно становятся цифровыми, растет и количество устройств, генерирующих, обрабатывающих и хранящих цифровой контент.

Многоядерные процессоры Intel в сочетании с другими компонентами платформ предоставляют расширенные возможности для управления и для обеспечения безопасности. Они позволяют уменьшить время отклика системы во время одновременной работы нескольких управляющих или профилактических программ, таких как антивирусная проверка, обновление ПО, проверка конфигурации или запрос на инвентаризацию. Используя технологию виртуализации, поддерживаемую многими платформами Intel, можно одновременно запустить несколько операционных систем без снижения производительности приложений в каждой из них.

Значительные вычислительные ресурсы многоядерных процессоров предоставят разработчикам игр большую степень свободы для создания полноценной графики, для реализации физики процессов, а также функций искусственного интеллекта

2.2 Тенденции развития

Все большее значение многоядерные процессоры приобретают в условиях всеобщей «цифрофикации» окружающей нас информации. Музыка, видео, фотографии, игры - их носители повсеместно становятся цифровыми, растет и количество устройств, генерирующих, обрабатывающих и хранящих цифровой контент.

Еще одна важная задача - расширение коммуникационной функции ПК. Проникновение в наши офисы и дома новых телекоммуникационных технологий, таких как VoIP, а также рост пропускной способности сетей требует обработки огромного количества пакетов данных, но это не должно влиять на скорость работы основных приложений. Многоядерные процессоры помогут справиться с этой задачей, правильно распределив ресурс вычислительных ядер для обработки сетевых пакетов и выполнения других приложений.

Многоядерные процессоры Intel в сочетании с другими компонентами платформ предоставляют расширенные возможности для управления и для обеспечения безопасности. Они позволяют уменьшить время отклика системы во время одновременной работы нескольких управляющих или профилактических программ, таких как антивирусная проверка, обновление ПО, проверка конфигурации или запрос на инвентаризацию. Более того, используя технологию виртуализации, поддерживаемую многими платформами Intel, можно одновременно запустить несколько операционных систем без снижения производительности приложений в каждой из них.

2.2.1 Развития процессоров

ЭВМ представляет собой систему процессоров. Каждый процессор состоит из некоторой совокупности запоминающих устройств, устройств управления и операционного устройства. Эти составные части процессора связаны между собой определенным образом. Связь между процессорами осуществляется за счет наличия общих запоминающих устройств, которые могут служить для передачи информации (в этом случае они называются буферными ЗУ) и для передачи управляющих сигналов (в этом случае они называются контактными ЗУ).

Одни процессоры машины называют центральными, другие - периферийными. К периферийным относят процессоры, предназначенные для ввода или вывода информации. Способы контакта и обмена с ними в реальных ЭВМ очень разнообразны. Но общий принцип действия всех процессоров одинаков.

Одной из плодотворных находок явилась система прерываний - замечательный союз программных и аппаратных (внутримашинных) средств, предназначенных для быстрой реакции машины на чрезвычайные события. Действия этой системы направлены на то, чтобы «зафиксировать» ситуацию, имеющую место в ЭВМ в момент возникновения прерывания. Под прерыванием, таким образом, понимается временное прекращение выполнения текущей программы центральными устройствами ЭВМ с запоминанием точки, в которой прервана данная программа со всей относящейся к ней информацией и одновременный переход к выполнению другой программы. Программа, прерванная ранее и находящаяся в состоянии «ожидания», может вернуться в состояние «счет» после устранения причины, вызвавшей ее прерывание.

За счет большого числа центральных процессоров среднее число операций, которые может выполнять ЭВМ в единицу времени, т.е. быстродействие машины, возрастает. Для многопроцессорной ЭВМ программу решения задач иногда можно составить так, чтобы различные части этой программы выполняли разные центральные процессоры.

Составление таких программ получило название параллельного программирования (точнее: программирование с расчетом на параллельное выполнение программ). Поскольку ЭВМ представляет собой систему процессоров, то можно говорить о «коллективе исполнителей».

Обработка информации осуществляется по программе, которая представляет собой последовательность команд, направляющих работу компьютера. Команда состоит из кода операции и адреса. Код операции сообщает микропроцессору, что нужно сделать, какую выполнить операцию: сложить, сравнить, переслать и очистить. Адрес указывает место, где находятся данные, подлежащие обработке. Команды бывают безадресные, одноадресные и двухадресные.

Развитие микропроцессора происходит в процессе повышения тактовой частоты. Для повышения тактовой частоты при выбранных материалах используются: более совершенный технологический процесс с меньшими проектными нормами; увеличение числа слоев металлизации; более совершенная схемотехника меньшей каскадности и с более совершенными транзисторами, а также более плотная компоновка функциональных блоков кристалла.

Так, все производители микропроцессоров перешли на технологию КМОП, хотя Intel, например, использовала БиКМОП для первых представителей семейства Pentium. Известно, что биполярные схемы и КМОП на высоких частотах имеют примерно одинаковые показатели тепловыделения, но КМОП-схемы более технологичны, что и определило их преобладание в микропроцессорах.

Уменьшение размеров транзисторов, сопровождаемое снижением напряжения питания с 5В до 2,5-3В и ниже, увеличивает быстродействие и уменьшает выделяемую тепловую энергию. Все производители микропроцессоров перешли с проектных норм 0,35-0,25мкм на 0,18мкм и 0,12мкм и стремятся использовать уникальную 0,07мкм технологию (см. Таблица 1).

Таблица 1 - Тенденции изменений характеристик памяти

Год производства

2005

2006

2007

2010

2013

2017

DRAM, нм

80

70

65

45

32

32

МП, нм

80

70

65

45

32

32

Uпит, B

0,9

0,9

0,7

0,6

0,5

0,4

P, Вт

170

180

190

218

251

288

При минимальном размере деталей внутренней структуры интегральных схем 0,1-0,2мкм достигается оптимум, ниже которого все характеристики транзистора быстро ухудшаются. Практически все свойства твердого тела, включая его электропроводность, резко изменяются и «сопротивляются» дальнейшей миниатюризации, возрастание сопротивления связей происходит экспоненциально. Потери даже на кратчайших линиях внутренних соединений такого размера «съедают» до 90% сигнала по уровню и мощности.

Уменьшение длины межсоединений актуально для повышения тактовой частоты работы, так как длительность такта занимает время прохождения сигналов по проводникам внутри кристалла. Например, в Alpha 21264 предприняты специальные меры по кластеризации обработки, призванные локализовать взаимодействующие элементы микропроцессора.

Проблема уменьшения длины межсоединений на кристалле при использовании традиционных технологий решается путем увеличения числа слоев металлизации. Так, Cyrix при сохранении 0,6 мкм КМОП технологии за счет увеличения с 3 до 5 слоев металлизации сократила размер кристалла на 40% и уменьшила выделяемую мощность, исключив существовавший ранее перегрев кристаллов.

2.2.2 Увеличение объема и пропускной способности подсистемы памяти

Возможные решения по увеличению пропускной способности подсистемы памяти включают создание кэш-памяти одного или нескольких уровней, а также увеличение пропускной способности интерфейсов между процессором и кэш-памятью и конфликтующей с этим увеличением пропускной способности между процессором и основной памятью.

Совершенствование интерфейсов реализуется как увеличением пропускной способности шин, так и введением дополнительных шин, расшивающих конфликты между процессором, кэш-памятью и основной памятью. В последнем случае одна шина работает на частоте процессора с кэш-памятью, а вторая - на частоте работы основной памяти. При этом частоты работы второй шины, например, равны 66, 66, 166 МГц для микропроцессоров Pentium Pro-200, Power PC 604E-225, Alpha 21164-500, работающих на тактовых частотах 300, 225, 500 МГц, соответственно. При ширине шин 64, 64, 128 разрядов это обеспечивает пропускную способность интерфейса с основной памятью 512, 512, 2560 Мбайт/с, соответственно.

Общая тенденция увеличения размеров кэш-памяти реализуется по-разному:

- внешние кэш-памяти данных и команд с двухтактовым временем доступа объемом от 256 Кбайт до 2 Мбайт со временем доступа 2 такта в HP PA-8000;

- отдельный кристалл кэш-памяти второго уровня, размещенный в одном корпусе в Pentium Pro;

- размещение отдельных кэш-памяти команд и кэш-памяти данных первого уровня объемом по 8 Кбайт и общей для команд и данных кэш-памяти второго уровня объемом 96 Кбайт в Alpha 21164.

Наиболее используемое решение состоит в размещении на кристалле отдельных кэш-памятей первого уровня для данных и команд с возможным созданием внекристальной кэш-памяти второго уровня.

2.2.3 Увеличение количества параллельно работающих исполнительных устройств

Каждое семейство микропроцессоров демонстрирует в следующем поколении увеличение числа функциональных исполнительных устройств и улучшение их характеристик, как временных (сокращение числа ступеней конвейера и уменьшение длительности каждой ступени), так и функциональных (введение ММХ-расширений системы команд и т.д.).

Широко используются архитектуры с длинным командным словом - VLIW. Так, архитектура IA-64, развиваемая Intel и HP, использует объединение нескольких инструкций в одной команде (EPIC). Это позволяет упростить процессор и ускорить выполнение команд. Процессоры с архитектурой IA-64 могут адресоваться к 4 Гбайтам памяти и работать с 64-разрядными данными. Архитектура IA-64 используется в микропроцессоре Merced, обеспечивая производительность до 6 Гфлоп при операциях с одинарной точностью и до 3Гфлоп - с повышенной точностью на частоте 1ГГц.

2.2.4 Системы на одном кристалле и новые технологии

В настоящее время получили широкое развитие системы, выполненные на одном кристалле - SOC (System On Chip). Сфера применения SOC - от игровых приставок до телекоммуникаций. Такие кристаллы требуют применения новейших технологий.

Основной технологический прорыв в области SOC удалось сделать корпорации IBM, которая смогла реализовать сравнительно недорогой процесс объединения на одном кристалле логической части микропроцессора и оперативной памяти. В новой технологии используется конструкция памяти с врезанными ячейками (trench cell). Конденсатор, хранящий заряд, помещается в некое углубление в кремниевом кристалле. Это позволяет разместить на нем свыше 24 тыс. элементов, что почти в 8 раз больше, чем на обычном микропроцессоре, и в 2-4 раза больше, чем в микросхемах памяти для ПК. Хотя кристаллы, объединяющие логические схемы и память на одном кристалле, выпускались и ранее, например, такими фирмами, как Toshiba, Siemens AG и Mitsubishi, подход, предложенный IBM, выгодно отличается по стоимости. Причем ее снижение никоим образом не сказывается на производительности.

Для создания SOC IBM использует самые современные технологические решения, одним из которых являются медные межсоединения (copper interconnect). По сравнению с технологией, где межсоединения выполнены на основе алюминия, медь позволяет сделать кристалл меньшим по размеру и более быстродействующим. Медная металлизация уменьшает общее сопротивление, что позволяет увеличить скорость работы кристалла на 15-20%. Обычно эта технология дополняется еще одной новинкой: технологией кремний на изоляторе - КНИ (SOI, Silicon On Insulator). Она уменьшает паразитные емкости, возникающие между элементами микросхемы и подложкой. Благодаря этому тактовую частоту работы транзисторов также можно увеличить. Возрастание скорости от использования КНИ приближается к 20-30%. Таким образом, общий рост производительности в идеальном случае может достигнуть 50%.

2.3 Современный российский ПК

Современный ПК собирается из очень небольшого числа электронных блоков, монтируемых в корпусе компьютера. В итоге «портрет» компьютера складывается из «изображений» его составных частей. Как показывает практика, каждый тип комплектующих для ПК эволюционирует неровно «волнами» и зачастую независимо от компонентов других типов. И было бы ошибкой утверждать, что качество комплектующих всех типов для ПК возрастало в последнее время одинаково быстро.

Системная память перешла в разряд ОЗУ для ПК начального уровня и активно вытесняется DDR333 SDRAM - последняя успешно применяется в мощных ПК, и на сегодня ПК-индустрия фактически готова к ее массовому использованию.

RDRAM-пaмять пока не спешит сдавать позиции - на смену РС800 пришла PC 1066 RDRAM, которая значительно обгоняет DDR333 SDRAM по скорости работы и устанавливается в графические и видеомонтажные станции начального уровня.

Также появились системные платы, работающие с DDR266 SDRAM в двухканальном режиме (на базе НМС Intel E7205), а в этом случае по «скорострельности» она не уступает PC 1066 RDRAM.

Последние модели графических адаптеров оснащаются интерфейсом AGP 8X, который работает вдвое быстрее предшествовавшего ему AGP 4X.

В развитии жестких дисков виден рост объема кэш-буфера (на сегодня - стандартно 2 Мбайт у всех без исключения накопителей со скоростью вращения 7200 и 5400 об/мин и до 8 Мбайт у моделей на 7200 об/мин (год назад - от 128 Кбайт до 2 Мбайт у дисков на 5400 об./мин и до 2 Мбайт - у моделей на 7200 об./мин), выпуск компанией Maxtor накопителей с интерфейсом Ultra/ATA и уменьшение уровня шума за счет использования двигателей на жидкостных подшипниках.

ПК с сетевым Ethernet-интерфейсом сегодня оснащаются сетевым РСГ-адаптером 10/100 Мбит/с или, чаще, системной платой со встроенным сетевым контроллером 10/100 Мбит/с, но в некоторых «навороченных» моделях уже устанавливаются гигабитные сетевые РСГ-платы.

Периферийный интерфейс USB 2.0 с пропускной способностью 480 Мбит/с стал стандартом. В будущем USB 2.0 не только вытеснит медленный интерфейс USB 1.1 (со скоростью передачи данных до 12 Мбит/с), но и составит серьезную конкуренцию IEEE-1394 - последний, кстати, можно обнаружить практически во всех мощных мультимедийных ПК (см. Приложение В, Таблица В.2).

Практически все современные корпуса имеют на передней панели разъемы для вывода наружу двух USB- и двух звуковых портов, а некоторые - еще одного порта IEEE-1394. Кроме того, последние модели Intel Pentium 4 и мощные видеоплаты с высоким тепловыделением требуют очень эффективного охлаждения, поэтому во многих ПК устанавливаются два дополнительных вентилятора, а в некоторых корпусах используются нестандартные вентиляторы.

По прогнозам специалистов уверенное доминирование третьего поколения памяти DDR на рынке ОЗУ следует ожидать лишь в 2009-ом году.

Списком развития процессоров находится в Плиложении А.

Для сравнения описаны примеры процессоров в Приложении Б.

Для подтверждения характеристик в новых моделях процессора провели тестирование (см. Таблица 2).


Таблица 2 - Тестирование последних моделей процессоров

Процессор

Кол-во ядер

Макс. частота

Socket

Объем - кэш

Тест CPU PCMark

1

Intel Core i7-8700K

6

4,7 ГГц

LGA1151

12 Мбайт

4.047 бал.

2

AMD Ryzen 7 1700

8

3,7 ГГц

AM4

16 Мбайт

3.657 бал.

3

AMD Ryzen 5 1600X

6

4,0 ГГц

AM4

16 Мбайт

3.629 бал.

4

AMD Ryzen 5 1600

6

3,6 ГГц

AM4

16 Мбайт

3.595 бал.

5

Intel Core i7-7700K

4

4,5 ГГц

LGA1151

8 Мбайт

4.122 бал.

Сопоставляя прошлое поколение процессоров и доступные сегодня модели, стоит признать практически абсолютное лидерство Intel в высокопроизводительном сегменте. 

Заключение

По итогам представленной работы можно сделать следующие выводы: эволюция, которая все время происходит в мире компьютерной технике, очень и очень необходима. Ведь чем более универсальна техника, тем больше мы способны произвести на своих рабочих местах при помощи нее.

С каждым новым поколением увеличивалось быстродействие, уменьшались потребляемая мощность и масса ЭВМ, повышалась их надежность. При этом возрастали их «интеллектуальные» возможности - способность «понимать» человека и обеспечивать ему эффективные средства для обращения к ЭВМ.

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволяют общаться с компьютером естественным для человека образом.

В ближайшие годы будет возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Информационная революция затронет все стороны жизнедеятельности.

Компьютерные системы: при работе на компьютере с «дружественным интерфейсом» человек будет воочию видеть виртуального собеседника, активно общаться с ним на естественном речевом уровне с аудио- и видеоразъяснениями, советами, подсказками. «Компьютерное одиночество», так вредно влияющее на психику активных пользователей, исчезнет.

Системы автоматизированного обучения: при наличии обратной видеосвязи ученик будет общаться с персональным виртуальным наставником, учитывающим психологию, подготовленность, восприимчивость подопечного.

Виртуальный туризм вполне доступен уже в наше время - это, к примеру, путеводители по музеям мира на цифровых носителях (компакт-диски, в том числе интерактивные) или путешествия по тем же музеям или памятникам архитектуры с помощью Интернет.

Интернет предоставляет также возможность побывать практически «вживую» во многих уголках земного шара - по обоим полушариям разбросаны сотни телевизионных камер, с определенной периодичностью (от нескольких минут до нескольких часов) транслирующих в сеть полученную ими картинку. Их принадлежность самая разнообразная - от частных лиц и организаций до «компетентных органов».

Приложение А

Платформы для мобильных ПК.

- Napa (2006 год) - технология Intel Centrino Duo для мобильных ПК:

- процессор Yonah;

- набор микросхем Calistoga - семейство наборов микросхем Intel 945 Express для мобильных ПК;

- сетевой адаптер Intel Pro/Wireless 3945.

Обновленная версия платформы Napa, которая поддерживает процессоры Merom.

- Santa Rosa (2007 год) - технология Intel Centrino Duo для мобильных ПК следующего поколения:

- процессор Merom;

- набор микросхем Crestline;

- беспроводной сетевой адаптер Kedron.

Платформы для настольных ПК.

- Anchor Creek (2005 год):

- процессоры Intel Pentium Extreme Edition, Intel Pentium D (Smithfield и 65-нм Presler), Intel Pentium 4;

- наборы микросхем Intel 945G/955X Express;

- сетевое решение 83573E.

- Bridge Creek (2006 год):

- процессоры Intel Pentium D (Smithfield и 65-нм Presler), семейство Conroe;

- набор микросхем Broadwater;

- гигабитное сетевое решение Intel.

Цифровой офис

- Lyndon (2005 год):

- процессоры Intel Pentium D (Smithfield и 65-нм Presler), Intel Pentium 4;

- набор микросхем Intel 945G/955X Express;

- сетевое решение Intel Pro/1000 PM;

- технологии Intel Active Management Technology и Intel Virtualization Technology.

- Averill (2006 год):

процессоры Intel Pentium 4, Intel Pentium D (Smithfield и 65-нм Presler), семейство Conroe;

- набор микросхем Broadwater;

- технологии Intel Active Management Technology второго поколения и Intel Virtualization Technology.

В некоторых платформах для цифрового офиса, в том числе в Averill, будет реализована технология LaGrande Technology.

Однопроцессорные серверы Pailo:

процессоры Intel Pentium D (Smithfield и 65-нм Presler), Intel Pentium 4;

- набор микросхем Intel 7230.

- Kaylo:

- семейство процессоров Conroe;

- семейство наборов микросхем Mukilteo-2.

- Серверы с низким энергопотреблением:

- процессор Sossaman;

- набор микросхем Intel E7520.

- Двухпроцессорные серверы на базе процессоров семейства Intel Xeon Bensley:

- набор микросхем Blackford.

- Многопроцессорные серверы на базе процессоров семейства Intel Xeon MP Truland:

- процессоры Paxville MP, Tulsa;

- наборы микросхем Intel E8500 и E8501.

- Caneland (будущая платформа для многопроцессорных серверов):

- процессоры Tigerton, Dunninton;

- будущий набор микросхем.

- Платформы на базе процессоров семейства Intel Itanium:

- процессоры Montecito, Montvale;

- набор микросхем Intel E8870.

- Richford (будущие платформы на базе процессора Itanium):

- процессоры Tukwila, Poulson;

- будущий набор микросхем.

Платформы для рабочих станций уровня предприятий Glidewell (для двухпроцессорных рабочих станций):

- процессоры Dempsey, Woodcrest;

- набор микросхем Greencreek.

- Gallaway (для однопроцессорных рабочих станций):

- процессоры Intel Pentium D (Smithfield и 65-нм Presler), Intel Pentium 4;

- набор микросхем Intel 955X Express.

- Wyloway (для однопроцессорных рабочих станций):

- процессор Conroe;

- набор микросхем Intel 975X Express.

Процессоры семейства Intel Itanium для серверных систем.

Приложение Б

Montecit - двухъядерный процессор Intel на базе 90-нм производственной технологии из семейства Intel Itanium. В процессоре Montecito также реализована технология HT, позволяющая одновременно выполнять четыре потока команд. Процессор содержит более 1,7 млрд. транзисторов и обладает кэш-памятью третьего уровня объемом 24 Мбайт. Предусмотрена также поддержка технологии Intel Virtualization Technology.

Montval - следующая модель двухъядерного процессора Intel на базе 90-нм производственной технологии из семейства процессоров Intel Itanium, основанная на Montecito.

Tukwila - многоядерный процессор из семейства Intel Itanium. Процессор Tukwila содержит четыре или более ядер и иметь общую архитектуру с платформой на базе процессоров семейства Intel Xeon.

Dimona - процессор из семейства Intel Itanium для двухпроцессорных серверов, построенный на базе процессора Tukwila.

Poulson - процессор из семейства Intel Itanium, следующий в планах выпуска продукции за процессором Tukwila.

Процессоры семейства Intel Xeon для серверных систем

Intel Xeon - двухъядерный процессор Intel, изготовлен по 90-нм производственной технологии для многопроцессорных серверов на базе процессоров Intel Xeon, содержащих четыре или более процессоров. В процессоре Paxville MP также реализована технология HT, позволяющая одновременно выполнять четыре потока команд на каждом процессоре. Paxville MP используется в серверах на базе платформы Truland.

Tulsa - двухъядерный процессор семейства Intel Xeon для многопроцессорных серверов (четыре или более процессоров). Они позволят обеспечить максимальное время безотказной работы для жизненно важных вычислительных сред благодаря применению многоядерных процессоров с кэш-памятью большого объема.

Tigerton - четырехъядерный процессор Intel Xeon для многопроцессорных серверов. Процессор Tigerton, основан на микроархитектуре Intel Core с передовыми показателями энергоэффективной производительности и поддерживает высокоскоростные межсоединения.

Dunnington - многоядерный процессор Intel для многопроцессорных серверов на базе процессоров Intel Xeon.

Intel Xeon (ранее известный под кодовым названием Paxville DP) - недавно выпущенный двухъядерный процессор Intel изготовлен по 90-нм производственной технологии и предназначен для двухпроцессорных серверов на базе процессоров Intel Xeon. В нем реализована технология HT, позволяющая одновременно выполнять четыре потока команд на каждом процессоре. Эти процессоры используются в серверах, построенных на базе набора микросхем Intel E7520 (ранее известного по кодовым названием Lindenhurst).

Dempsey - двухъядерный процессор Intel изготовлен по 65-нм производственной технологии для использования в двухпроцессорных серверах и рабочих станциях на базе процессоров Intel Xeon. В процессоре Dempsey также реализована технология HT, позволяющая одновременно выполнять четыре потока команд на каждом процессоре.

Intel Xeon LV (ранее известный под названием Sossaman) - двухъядерный процессор Intel Xeon с низким энергопотреблением, который отличается лучшим в отрасли соотношением производительности на один ватт потребляемой энергии. Он идеально подходит для создания решений с высокой плотностью вычислительных ресурсов и низким энергопотреблением. Этот процессор разработан на основе микроархитектуры Intel для мобильных процессоров (ядро Yonah) и потребляет около 31 Вт энергии.

Woodcrest - двухъядерный процессор Intel следующего поколения для двухпроцессорных серверов и рабочих станций, основанный на новой микроархитектуре Intel Core с передовыми показателями энергоэффективной производительности.

Clovertown - первый четырехъядерный процессор Intel для двухпроцессорных серверов и рабочих станций, основанный на новой микроархитектуре Intel Core с передовыми показателями энергоэффективной производительности. Процессоры Clovertown включают четыре полных исполняющих ядра.

Процессоры для настольных систем

Intel Pentium Extreme Edition - двухъядерный процессор, изготовленный на базе ядер Smithfield и Presler с поддержкой технологии HT, позволяющей одновременно выполнять четыре потока команд на каждом процессоре. Вариант этого процессора на ядре Smithfield (90-нм производственная технология). Вариант Intel Pentium Extreme Edition, созданный на ядре Presler (65-нанометровая технология).

Intel Pentium D (известен под кодовым названием Smithfield) - торговая марка стандартного двухъядерного процессора класса Intel Pentium на ядре Smithfield (90-нм производственная технология), предназначенного для массового пользователя. Не поддерживает технологию HT.

Intel Pentium D (ранее известный под кодовым названием Presler) - двухъядерный процессор Intel для настольных ПК на базе 65-нм производственной технологии, использующий два ядра Cedar Mill в одном корпусе (multi-chip processor package, MCP). Не поддерживает технологию HT. Этот процессор Intel Pentium D на базе 65-нм технологии.

Intel Pentium 4 (ранее известный под кодовым названием Cedar Mill) - одноядерный процессор Intel на базе 65-нм производственной технологии.

Conroe - двухъядерный процессор Intel для настольных ПК, созданный на базе 65-нм производственной технологии, разработан на базе новой микроархитектуры Intel Core с передовыми показателями энергоэффективной производительности.

Kentsfield - первый четырехъядерный процессор Intel для сегмента наиболее высокопроизводительных настольных ПК, основанный на новой микроархитектуре Intel Core с передовыми показателями энергоэффективной производительности.

Intel Core Duo (ранее известный под кодовым названием Yonah) - двухъядерный процессор Intel на базе 65-нм производственной технологии, оптимизированный для мобильных ПК. Процессор Intel Core Duo является компонентом платформ, созданных на базе технологии Intel Centrino Duo для мобильных ПК (ранее известной под кодовым наименованием Napa).

Merom - оптимизированный для мобильных систем двухъядерный процессор Intel нового поколения, созданный на базе 65-нм производственной технологии и новой микроархитектуры Intel Core с передовыми показателями энергоэффективной производительности. Merom вошел в состав обновленной платформы Napa. Процессор Merom вошел в состав платформы под кодовым названием Santa Rosa.

Список литературы


1. Аглицкий, Д. С. Персональный компьютер и Windows для всех / Д. С. Аглицкий, С. А. Любченко. - М.: Москва,
2002. - 112 с.

2.  Бройдо, В Л. Основы информатики / В. Л. Бройдо. - СПб.: ГИЭА, 2003. - 104 с.
3. Еремин, Е. А. Как работает современный компьютер / Е. А. Еремин. - СПб.: ПРИПИТ, 2005. - 89 с.

4. Конюховский, П. В. Экономическая информатика / П. В. Конюховский, Д. Н. Колесов, Г. С. Осипов. - СПБ.: Питер, 2001. - 560 с.

5. Макарова, Н. В. Информатика/ Н. В. Макарова. - М.: Финансы и статистика, 2003. - 768 с.
6. Новиков, Ю. Персональные компьютеры / Ю. Новиков, А. Черепанов. - СПб.: Питер, 2001. - 464 с.
7. Нортон Питер. Компьютер изнутри / Питер Нортон. - СПб.: ИТМО, 2003. - 90 с.

8. Пресс Билл. Ремонт и модернизация ПК. Библия пользователя / Билл Пресс. - М.: Мир, 2004. - 320 с.
9. Смирнов, А. Д. Архитектура вычислительных систем / А. Д. Смирнов. - М.: Наука, 2003. - 320 с.
10. Черкасова, Ю. М. Информатика / Ю. М. Черкасова. - М.: Иртыш, 2003. - 602 с.

11. Шафрин, Ю. А. Основы компьютерной технологии: учебное пособие / Ю. А. Шафрин. - М.: АБФ, 2003. - 302 с.

12. Ясенов, В. М. Экономическая информатика / В. М. Ясенов. - М.: Мир, 2004. - 320 с.

13. Сайт http://ichip.ru/test-processorov-full